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Introduction: Postoperative programming in deep brain stimulation (DBS) therapy for movement disorders can be challenging
and time consuming. Providing the neurologist with tools to visualize the electrode location relative to the patient’s anatomy
along with models of tissue activation and statistical data can therefore be very helpful. In this study, we evaluate the consistency
between neurologists in interpreting and using such information provided by our DBS programming assistance software.

Methods: Five neurologists experienced in DBS programming were each given a dataset of 29 leads implanted in 17 patients. For
each patient, probabilistic maps of stimulation response, anatomical images, models of tissue activation volumes, and electrode
positions were presented inside a software framework called CRAnialVault Explorer (CRAVE) developed in house. Consistency
between neurologists in optimal contact selection using the software was measured.

Results: With only the efficacy map, the average consistency among the five neurologists with respect to the mode and mean of
their selections was 97% and 95%, respectively, while these numbers were 93% and 89%, respectively, when both efficacy and an
adverse effect map were used simultaneously. Fleiss’ kappa statistic also showed very strong agreement among the neurologists
(0.87 when using one map and 0.72 when using two maps).

Conclusion: Our five neurologists demonstrated high consistency in interpreting information provided by the CRAVE interactive
visualization software for DBS postoperative programming assistance. Three of our five neurologists had no prior experience with
the software, which suggests that the software has a short learning curve and contact selection is not dependent on familiarity
with the program tools.
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INTRODUCTION

Deep brain stimulation (DBS) is an accepted and beneficial treat-
ment option for movement disorders including moderately
advanced Parkinson’s disease (PD) and essential tremor (ET) in situ-
ations where medications do not adequately control motor symp-
toms (1–4). However, DBS programming can be a challenging and
time-consuming process (5,6). Traditionally, a programming neu-
rologist takes a lengthy step-by-step approach by first testing indi-
vidual contacts at a standard pulse width and frequency at
progressively higher stimulation amplitudes until an adverse effect
threshold is reached. The objective of programming is to maximize
therapeutic benefit for the patient, i.e., reduce motor symptoms as
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much as possible while minimizing adverse effects. If this cannot be
achieved with single contacts or monopolar settings, a combination
of contacts is then used.

Over the last several years, much progress has been made in
building functional atlases (7–14) for use in DBS therapy using
advanced image registration techniques. Much progress has also
been made on models of activation volumes (15,16) and three-
dimensional histological atlases (17–19). Utilization of such data
during postoperative programming requires a program that can
render and present these data in a way that has a user-friendly
interface and more importantly leads to consistent interpretations
across users. The only known relevant work to date using interactive
mapping software for postoperative programming was recently
published by Butson et al. (20). They demonstrated interactive visu-
alization on mobile computing platforms for clinician selection of
DBS programming parameters. The information provided to poten-
tial programmers was the volume of tissue activation (VTA) and the
relevant anatomical structures overlaid on a DBS lead. They used an
anatomical-driven approach whereby five clinicians were asked to
select the optimal contact and settings based only on the interaction
of the contacts and their corresponding VTAs with the anatomical
structures. The study was conducted in four unilateral subthalamic
(STN)-targeted DBS PD patients who were both good responders to
DBS therapy and whose implants were found to be localized inside
the STN.Their work was not aimed at investigating consistency in the
interpretation of the presented data, yet they did demonstrate a lack
of consensus on the anatomical location of the optimal target.

With our software, we use a functionally driven approach based
on probabilistic maps of stimulation response mapped onto indi-
vidual patients with patient-specific anatomical information. In a
previous study (21), we introduced a software suite and a complete
processing pipeline that could be used to assist physicians in pre-
operative planning, intraoperative placement, and postoperative
programming of the DBS lead. The system consisted of a central
repository (CranialVault) and a suite of software modules called
CRAnialVault Explorer (CRAVE) that permits data entry and data
visualization at each stage of the therapy. Our goal in this study was
to evaluate the consistency among neurologists in interpreting and
using information from the CRAVE programming module to validate
its further use in a clinical setting as a tool to expedite and improve
postoperative DBS programming.

METHODS

Five neurologists (FTP, CT, TLD, JF, and PH) experienced in DBS
programming participated in this study. This study was approved by
the Vanderbilt Institutional Review Board. The neurologists were
each given an identical dataset that included 29 leads implanted in
17 patients (seven bilateral STN-DBS for PD, two unilateral STN-DBS
for PD, five bilateral ventral intermediate (Vim) nucleus of the
thalamus-DBS for ET, and three unilateral Vim-DBS for ET). A preop-
erative magnetic resonance imaging (MRI) and a postoperative
computed tomography (CT) were acquired for each patient. Typical
CT images were acquired at kVp = 120 V, exposure = 350 mAs, and
512 ¥ 512 pixels. In-plane resolution and slice thickness were,
respectively, 0.5 mm and 0.75 mm. MRIs (TR 12.2 ms, TE 2.4 ms, 256
¥ 256 ¥ 170 voxels, with typical voxel resolution of 1 ¥ 1 ¥ 1 mm3)
were acquired using the SENSE parallel imaging technique (T1W/
3D/TFE) from Philips on a 3T scanner (Best, The Netherlands). To
build probability maps for the patients in this study, stimulation
response data from a large population of our DBS patients were

used. These data were mapped onto an atlas MRI using nonrigid
registration (22,23). Then, for individual patients in the study, data
from the atlas were again projected onto the patient using nonrigid
registration between the atlas and patient MRIs. For PD patients,
maps of rigidity reduction and muscular contraction were built. For
ET patients, maps of tremor reduction and paresthesias were built.
Briefly, this involves associating each stimulation response observa-
tion with a probability density function that captures the likelihood
that a region in the vicinity of the measurement point is the respon-
sive region. Rigidity reduction and muscular contraction probability
maps were built using 760 data points in 154 STN-DBS implantation
and 191 points in 72 STN-DBS cases, respectively. Tremor reduction
and paresthesia probability maps were built using 663 data points
in 85 Vim-DBS cases and 216 points in 57 Vim-DBS cases, respec-
tively. Using the postoperative CT, individual contacts in the
implanted lead were extracted. By registering the MRI to the CT, the
probability maps and the leads were overlaid onto the anatomical
images from the MRI. For every patient, this entire process was
precomputed and packaged into a file that the neurologists could
simply load into CRAVE. The software suite allowed the neurologists
to visualize all this information and interact in 2D as well as in 3D. In
2D, the neurologists had access to tools that allowed visualizing and
interacting with the information in the coronal, axial, and sagittal
views simultaneously. They could navigate through slices as well as
zoom into regions of interest. In 3D, they could visualize and interact
with the renderings of the statistical maps and the lead. The neu-
rologists were also provided with several precomputed VTA models
that could be visualized in both 2D and 3D to assess the interaction
of the singular or multiple active contacts with the efficacy and
adverse effect maps as well as the anatomical MRI (Fig. 1). Two of the
five neurologists had prior experience with the software while the
other three neurologists were trained just prior to the study through
collective demonstration of a trial case on one large screen and an
individual tutorial of the software tools on their personal laptops.

The five neurologists were required to independently choose the
single best contact (0, 1, 2, or 3) expected to cause maximum
symptom reduction in the patient based on the overlay of only the
efficacy map (rigidity reduction map for PD and tremor reduction
map for ET) and the extracted lead on the patient’s MRI. Then the
neurologists loaded the adverse effect map (muscular contraction
for PD and paresthesia for ET) in addition to the efficacy map and
chose the single best contact that would maximize symptom reduc-
tion while minimizing the chances of the adverse effect. Over the 29
cases, consistency between the five neurologists was computed as
normalized indices of the total number of contacts by which the
neurologists were off with respect to the mean and mode of the
selections by the participating neurologists. In order to measure the
agreement among the neurologists, we also computed Fleiss’ kappa
statistic (24,25), which is used as a chance-adjusted measure of
agreement in a multirater multicategory dataset.

RESULTS

When only the efficacy or symptom reduction map was used to
choose the single best contact, all five neurologists choose the same
contact in 23 out of 29 cases. In the six cases where there was a
mismatch, the neurologists were off by no more than one contact. In
five of those cases, only one neurologist differed from the other four
neurologists’ chosen contact. In only 1 of the 29 cases was there a
two to three split between the neurologists. The average consis-
tency with respect to the mode of the neurologists’ selections was
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97% while that with respect to the mean of the neurologists’ selec-
tions was 95%. When both the efficacy and adverse effect maps
were presented for consideration, all five neurologists choose the
same contact in 16 out of 29 cases. In the 13 cases where there was
a mismatch, the neurologists were off by no more than one contact.
In 11 of those cases, only one neurologist’s chosen contact differed
from those of the other four neurologists. In only 2 of 29 cases was
there a two to three split between the neurologists. The average
consistency with respect to the mode of the neurologists’ selections
was 93% while that with respect to the mean of the neurologists’
selections was 89%. Using only the efficacy map, Fleiss’ kappa sta-
tistic was 0.8707 with 95% CI of [0.8516, 0.8899], indicating a very
strong agreement among the neurologists. With the efficacy map
and an adverse effect, Fleiss’ kappa statistic was slightly lower at
0.7207 [0.7014, 0.7401].

DISCUSSION

The results indicate that a panel of five neurologists using the
CRAVE software suite were very consistent in independently select-

ing optimum active contacts using information provided by the
statistical maps of efficacy and adverse effect. The consistency
between the neurologists using the efficacy map alone was 95% or
more. Fleiss’ kappa statistic showed very strong agreement among
the neurologists when they used only the efficacy map, and sub-
stantial agreement when both the adverse effect and efficacy maps
were used together. The marginal drop in agreement when an
adverse effect map was additionally provided suggests that while
such maps bring more information that can be relevant and useful,
they can also increase the variability in interpretation. An analysis of
the results reveals that the dataset can be divided into three catego-
ries. In the first category (14 cases), the efficacy map was closer to a
single contact than the adverse effect map. In the second category
(8 cases), the efficacy and adverse effect maps were at the same
distance to the same single contact. In the third category (7 cases),
several contacts were equidistant to both the efficacy and adverse
effect maps. The availability of the adverse effect map in addition to
the efficacy map changed the interrater agreement for 2 cases in the
first category. In 1 case, all neurologists agreed with only the efficacy
map but one of the neurologist changed contact when both maps
were available. In another case, one of the neurologists disagreed

Figure 1. CRAVE software interface that shows how models of volumes of tissue activation can be overlaid on a deep brain stimulation electrode along with the
patient’s magnetic resonance imaging and probability maps. The neurologists can visualize models of volumes of tissue activation for various stimulator parameters,
with one or more contacts turned on and with monopolar as well as bipolar settings. A 3D rendering is also shown.
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with the others with only the efficacy map, but was in agreement
when both maps were shown. Availability of the adverse effect map
in addition to the efficacy map for cases in the second category
decreased the number of cases for which all neurologists agreed by
1. Adding the adverse effect map to cases in the third category
decreased the number of cases for which all neurologists agreed by
6. These results suggest that when a single contact can cover the
efficacy map alone or when a single contact covers both the regions
of efficacy and adverse effect, there is little room for individual pref-
erences. In these cases, the availability of an adverse effect map in
addition to the efficacy map does not substantially affect the neu-
rologists’ decision. For cases in the third category, the situation is
not as clear and tradeoffs have to be made. It is likely that, in this
situation, personal preferences, e.g., relative weight put on efficacy
or side-effects, decrease interneurologist agreement.

One of the limitations of our study was that we only provided at
most two maps simultaneously. It is possible that the neurologists
may be interested in more than one adverse effect map along with
the efficacy map and perhaps some other information as well which
could potentially lower consistency. Also, we did not record the time
taken by each neurologist to load each dataset (preregistered
images, precomputed maps, and preextracted electrodes), interact
with the data, and choose the optimal contact in the 29 cases.
However, offline assessment over several cases showed that this
entire process takes under two min for a bilateral case. If the regis-
trations are not made available precomputed, the software has
built-in algorithms with complete functionality for performing
these registrations on the neurologist’s computer. Computing the
rigid registration between the patient MRI and CT, the nonrigid
registration between the patient MRI and atlas MRI, and validating
these on a typical 1.8 GHz Intel Core™ laptop computer with 4GB
RAM takes on the order of five min.

The results suggest that the CRAVE DBS software may be well
suited for clinical use by programming neurologists. The program
also has a small learning curve with user-friendly interaction. Our
results show high consistency among the neurologists despite the
fact that three of our five study participants had no prior experience
with the software. These results are promising for potentially wide-
spread use by physicians for postoperative DBS programming. We
are now in the process of testing this in a clinical setting.
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