
c
s
f
c
p
a
r
m
m
i
c
t
c
m
i
P
i
d
t
h
t
i
a
t
e
E

b
g
G

c
c
t

NeuroImage 18, 143–155 (2003)
d

An Algorithm for Rapid Calculation of a Probabilistic Functional Atlas of
Subcortical Structures from Electrophysiological Data Collected during

Functional Neurosurgery Procedures

Wieslaw L. Nowinski,* Dmitry Belov,* and Alim-Louis Benabid†
*Institute of Bioengineering, 21 Heng Mui Keng Terrace, 119613 Singapore; and

†Joseph Fourier University School of Medicine, Grenoble, France
p
f
a

k
s
t
s
a
e
m
c
t
r
e
i
i

The paper introduces an optimal algorithm for rapid
alculation of a probabilistic functional atlas (PFA) of
ubcortical structures from data collected during
unctional neurosurgery procedures. The PFA is cal-
ulated based on combined intraoperative electro-
hysiology, pre- and intraoperative neuroimaging,
nd postoperative neurological verification. The algo-
ithm converts the coordinates of the neurologically
ost effective contacts into probabilistic functional
aps taking into account the geometry of a stimulat-

ng electrode. The PFA calculation comprises the re-
onstruction of the contact coordinates from two or-
hogonal projections, normalizing (warping) the
ontacts modeled as cylinders, voxelizing the contact
odels, calculating the atlas, and computing probabil-

ty. In addition, an analytical representation of the
FA is formulated based on Gaussian modeling. The

nitial PFA has been calculated from the data collected
uring the treatment of 274 Parkinson’s disease pa-
ients, most of them operated bilaterally (487 operated
emispheres). It contains the most popular stereotac-
ic targets, the subthalamic nucleus, globus pallidus
nternus, and ventral intermedius nucleus. The key
pplication of the algorithm is targeting in stereotac-
ic and functional neurosurgery, and it also can be
mployed in human and animal brain research. © 2002

lsevier Science (USA)

Key Words: probabilistic functional atlas; electronic
rain atlases; stereotactic and functional neurosur-
ery; brain mapping; electrophysiology; voxelization;
aussian modeling.

INTRODUCTION

A number of stereotactic printed brain atlases have been
onstructed since the 1950s [1, 3, 34, 35, 38–40, 46]. To
he capabilities offered by electronic atlases, several printed i
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tlases have been converted into electronic form, including
he Schaltenbrand–Bailey atlas [14, 16, 48], the Schalten-
rand–Wahren atlas [14, 15, 23, 27, 37], the Talairach–Tour-
oux atlas [14, 26], the referentially oriented Talairach–
ournoux atlas [26], the Ono et al. atlas [27], the Afshar et al.
tlas [22], and the Van Buren–Borke atlas [14].
There are two major limitations in using the current elec-

ronic brain atlases for stereotactic and functional neurosur-
ery. First, these atlases are constructed from only a few
rains. Second, they are anatomical, while the actual stereo-
actic targets are functional. This paper addresses the con-
truction of a probabilistic functional atlas that overcomes
oth limitations and opens new possibilities, particularly in
roviding community-centric solutions in stereotactic and
unctional neurosurgery [25] and potentially in human and
nimal brain research.
During surgical procedures, such as the treatment of Par-

inson’s disease, microelectrodes or macroelectrodes are in-
erted into the patient’s brain to map it to identify stereotac-
ic targets. This mapping locates the functional positions of
tructures in the brain, as each structure has its own char-
cteristic firing pattern. After localizing the target by micro-
lectrode recording, the microelectrode is replaced by a per-
anent, stimulating electrode containing one or more

ontacts. By knowing the coordinates of the contacts and
heir size and electrophysiological properties, the activated
egion within the studied structure can be determined. Sev-
ral electrodes may be inserted into the patient’s brain dur-
ng surgery, either unilaterally or bilaterally, providing
nformation about the functional location of cerebral struc-
ures. By collecting data from numerous patients, it is pos-
ible to construct probabilistic maps showing functional dis-
ribution of subcortical structures. These functional
robabilistic maps have a great importance in treatment,
articularly in surgery of movement disorders, and in human
nd animal brain research.
The goal of this paper was to formulate an algorithm for

apid calculation of a probabilistic functional atlas from elec-
Received Jan

ombine the widely accepted and used printed atlases with
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rophysiological and neuroimaging data and to present the
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MATERIAL AND METHOD

We define the following. An electrode is a probe inserted
into the brain employed for recording or stimulation. A stim-
ulating electrode has one or more cylindrical contacts. A
contact is modeled as a cylinder; however, generally the
method proposed here does not limit the model of contact,
and it may be of any arbitrary shape. The best contact of a
multicontact electrode is the contact which is clinically most
active during postoperative neurological assessment of the
patient. The best electrode is that electrode which contains
the best contact(s). The results are calculated and presented
in the atlas space, which is a three-dimensional (3D) Carte-
sian space. Any point or vector with coordinates x, y, and z in
this space is denoted by (x, y, z). A structure is a part of the
brain for which its functional distribution is calculated in the
atlas space. The probabilistic functional atlas (PFA) or atlas
is a function that characterizes the spatial frequency of the
best contacts. The atlas value in point (x, y, z) is denoted by
a(x, y, z). The best atlas target is this subset of a given
structure where the atlas has the maximum value.

2.1. Material

High accuracy electrophysiological and neuroimaging data
have been collected for several years by the third author and
are available for hundreds of patients, most of them operated
bilaterally. For this study, we used 274 patients, 487 hemi-
spheres, and 500 best contacts.

The operating room environment for data collection has
been described [4]. A neurosurgical robot, NeuroMate (Inte-
grated Surgical Systems, France), was used for positioning
the electrodes and their locations we imaged intraoperatively
by two X rays. For data acquisition, the Ben-gun (Integrated
Surgical Systems, France) was employed in most cases. The
data for this study comprise the positions of the chronically
implanted electrodes and their best (clinically most active)
contacts. An electrode contains one or four cylindrical con-
tacts. For each patient, the locations of the anterior and
posterior commissures, the height of the thalamus, and the

width of the third ventricle were measured preoperatively on
two orthogonal X-ray ventriculography images followed by
the measurement of the positioning of the electrode(s) on an
intraoperative pair of X rays (Fig. 1). The use of X ray gave
undistorted data which subsequently were measured with
high accuracy, 0.2–0.3 mm. It should be noted that MRI was
not used to get the coordinates because it may result in
geometric distortions of a few millimeters, while the surgical
procedure requires submillimeter accuracy.

The electrophysiological and imaging data collected for
each patient are given in the data space. This space uses the
millimeter as unit. To build the probabilistic functional atlas,
these data have to be normalized and placed in the atlas
space. The atlas space is based on the same four landmarks
identified in the patient’s data: posterior commissure (PC),
anterior commissure (AC), height of the thalamus (HT), and
width of the third ventricle (V3) (Fig. 1). The atlas space was
constructed on the following reference axes (Fig. 2): The x
axis anteroposteriorly passing through the PC and AC. This
axis is scaled in PC–AC units and the distance between the
PC and AC is 12 PC–AC units. The y axis laterally passing
through the PC. This axis is scaled in millimeters. The z axis
dorsoventrally passing through the PC. This axis is scaled in
HT units and the height of the thalamus has 8 HT units.

The (continuous) atlas space was sampled uniformly with
the user-defined step resulting in cubic voxels. To transform
the original patient data given in millimeters to the atlas
space units, their approximate average values were taken,
HT � 16 mm, ACPC � 24 mm, and V3 � 6 mm.

2.2. Method

2.2.1. General Description of the Algorithm

The flow chart of the algorithm for the construction of the
probabilistic functional atlas is shown in Fig. 3. The atlas
was constructed from the best contacts. The positions of these
contacts were reconstructed from two orthogonal X rays and
placed in the atlas space by applying spatial normalization.
The normalized (warped) contacts were voxelized, the atlas
function was calculated, and finally the probability was com-
puted.

FIG. 1. X ray showing the anterior and posterior commissures
and the thalamus. The coordinates of the electrode and the land-
marks are measured on two different pairs of orthogonal projections.

FIG. 2. Probabilistic functional atlas coordinate system.
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2.2.2. Patient Data Collection

The collected patient data were kept, processed, and pre-
sented as a four-level tree structure. The first level is the list
of subcortical structures. At the second level, for each struc-
ture the list of patients (or subjects) is given. At the third
level, for each patient the list of electrodes is provided along
with their type and status (best, not best). The type of elec-
trode uniquely identifies its geometry, including diameter,
number of contacts, contact height, and gap between con-
tacts. At the fourth level, for each electrode the list of its
contacts is given. Each contact has its identifier, coordinates,
and status (best, not best). Either the complete data tree or
any subtree containing the data of interest can be selected for
the calculation of the probabilistic functional atlas.

2.2.3. Best Contact Selection

In the majority of cases, deep brain stimulating electrodes
with four contacts were employed. The initial best contacts
were determined during the surgery. Subsequently, the best
contacts were verified postoperatively in a neurological as-
sessment. As the contacts are switchable, the most neurolog-
ically effective contact was selected. In a few cases, two best
contacts were selected for a single electrode (hence their
number is 500, while the number of the best electrodes is only
487).

2.2.4. Contact Coordinate Reconstruction in 3D

The 3D coordinates of the contact are easily reconstructed
from two orthogonal X-ray projections. For this purpose, we
determined the physical coordinate system with center O,
positions of two X-ray sources and image plates in this coor-
dinate system, and both projections of O to orthogonal X-ray
images resulting in O1 and O2. By measuring on the X-ray
images the position of a contact against O1 and O2, we ob-
tained input data for a trivial geometrical problem of recon-

structing, a 3D point from its two orthogonal projections
given the positions of the X-ray sources.

2.2.5. Contact Normalization

The surgical procedure has been performed successfully for
several years by the third author. Continuous enhancement
and vast experience result in excellent outcomes and high
accuracy of the data collected. This procedure was based on
the available robust landmarks determined from X rays, i.e.,
AC, PC, HT, and V3. The spatial normalization used in our
algorithm followed surgery planning. The coordinates of the
best contact(s) were scaled anteroposteriorly proportionally
to the intercommissural distance AC–PC, dorsoventrally pro-
portionally to the height of thalamus HT, and compensated
laterally against the third ventricle, V3.

Let (x�, y�, z�), (x, y, z) be a point in the data space and atlas
space, respectively. Moreover, for a given brain specimen in
the data space, let us denote l as AC–PC length, g as the
height of the thalamus, and v as the width of third ventricle.
The transformation from the atlas space to the data space is

x� �
x � l

ACPC
, y� � y � �V3

2
�

v

2� , z� �
z � g

HT
. (1)

The transformation from the data space to the atlas space is
done as follows

x �
x� � ACPC

l
, y � y� � �v

2
�

V3

2 � , z �
z� � HT

g
, (2)

where sign V depends on the location of electrode; if it is in
the left hemisphere then the sign is “�”; otherwise it is “�.”

2.2.6. Normalized Contact Voxelization and Atlas
Calculation

Contact voxelization and atlas calculation can be done
efficiently within one procedure having two loops, so we de-
scribe these two steps jointly. The principle of atlas construc-
tion is illustrated in Fig. 4 and the corresponding flowchart of
the algorithm is diagrammed in Fig. 5.

The atlas function a(x, y, z) was set initially to zero. Then,
all best contacts were processed such that for each best
contact and for every voxel with a center (x, y, z) inside this
contact, the atlas function in this voxel was increased by 1,
i.e., a(x, y, z) :� a(x, y, z) � 1. After processing all best
contacts, function a(x, y, z) contains the value of the atlas for
a given structure.

The key problem in voxelization is finding all voxels that
intersect a considered cylinder. This particular problem is
part of a general class of problems in computer science aim-
ing at a discrete representation of continuous (real) objects.
There are a vast number of problems in this field ranging
from the representation of the real numbers as floating point
numbers to discrete representation of objects, such as a hy-
persphere [2]. Several voxelization approaches have been
proposed [e.g., [2, 6, 36], but none of them addresses an
efficient voxelization of a cylinder. Another problem is alias-

FIG. 3. Flowchart of the algorithm for calculation of the proba-
bilistic functional atlas.
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ing and the recent methods for alias-free voxelization have
been presented [36].

Our algorithm voxelizes not just a circular truncated cyl-
inder but also a transformed cylinder which can be an ellip-
tical cylinder or cylinder warped nonlinearly along the z axis.
For this purpose we introduce a new concept.

Definition NL. Homeomorphism T is NL transformation
if and only if T is a linear combination of a linear scaling
along the x and y axes, linear or nonlinear (one-to-one, con-
tinuous) scaling along the z axis, and linear translation along
the x, y, z axes.

Rotation can also be applied before T, as it does not change
the form of cylinder. Thus, NL transformation is more gen-
eral than an affine transformation as a nonlinear scaling
along the z axis is allowed. We denote by T�1 the inverse
transformation of T. Obviously T�1 is also NL transforma-
tion.

Mathematically, a problem of locating a point relative to a
cylinder is simple. Computationally, this problem is more
demanding, as all best cylindrical contacts and all voxels in
the atlas space relative to a selected cylindrical contact have
to be processed. At the same time, the atlas calculation must
be fast to allow its interactive calculation, particularly in
remote operations.

We define (Fig. 6) r as the radius of a cylinder, h as the
height of a cylinder, a � (x1, y1, z1) as the inferior tip of a
cylinder (by “tip” we mean one extreme of the longitudinal
axis of cylinder), b � (x2, y2, z2) as the superior tip of a
cylinder (without loss of generality we assume that z2 is
greater than or equal to z1), and T as the transformation
satisfying Definition NL. For PFA generation, we chose T
and T�1 based on the spatial normalization given in section
2.2.5.

FIG. 4. The principle of calculation of the atlas in a two-dimensional case: (a) arrangement of the best contacts within the structure and
(b) the resulting probabilistic map.

FIG. 5. Flowchart of the algorithm for calculation of the atlas
function. FIG. 6. Illustration of the definitions in the cylindrical contact.
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The general idea of cylinder voxelization is to find the
limits of its two coordinates (x, y) (Appendix 1). Then, by
fixing these coordinates within their limits, the limit of the
third coordinate z is found (Appendix 2). In this way, all
points (x, y, z) within the cylinder can be obtained.

Voxelization algorithm. The atlas space is subdivided by
voxels, each with a size of hx � hy � hz. The voxelization
algorithm performs the following steps applied to each best
cylindrical contact: 1. Find the minimum and maximum lim-
its of x and y for the cylinder and denote them by x�min, x�max and
y�min, y�max, respectively (as described in Appendix 1). 2. By
using transformation T, transform x�min, x�max and y�min, y�max to
the atlas space. The results are xmin, xmax and ymin, ymax, re-
spectively. 3. By using transformation T�1, transform hx and
hy to the data space. The resulting values are h�x and h�y. As a
result, for any point (x, y) from rectangle [xmin, xmax] � [ymin,
ymax], there is a unique corresponding point (x�, y�) from
rectangle [x�min, x�max] � [y�min, y�max] and vice versa. 4. Let x�(x)
be in range [x�min, x�max] ([xmin, xmax]) with step h�x(hx), y�(y) be in
range [y�min, y�max] ([ymin, ymax]) with step h�y(hy). For every point
(x�, y�) ((x, y)), the following operations are performed: 4.1. If
there is a range of z coordinate [z�min, z�max] such that segment
e�f � belongs to the cylinder, where e� � (x�, y�, z�min) and f � �
(x�, y�, z�max) (as described in Appendix 2), then the following
steps are performed: 4.1.1. By using transformation T, trans-
form z�min and z�max to the atlas space and denote them by zmin

and zmax, respectively. 4.1.2. For each voxel (xc, yc, zc) contain-
ing point (x, y, z), where z is changing from zmin to zmax with
step hz, a(xc, yc, zc) :� a(xc, yc, zc) � 1.

As this algorithm finds all voxels which are intersected by
a cylinder, one can easily modify it to select, for instance,
voxels with centers inside or on the cylinder. An example of
a voxelized contact modeled as a cylinder is shown in Fig. 7.

Once the atlas has been constructed, the surfaces of its
structures can optionally be smoothed using antialiasing
[11]. Antialiasing can also be done on the fly as follows. Let S
be the volume of a voxel and S� the volume of that part of the
voxel which belongs to the best contact. Then atlas value
inside the voxel is increased by the ratio of S� by S.

The total complexity of the algorithm is bounded by O(N �
M), where N is the number of best contacts and M is the
maximum number of voxels that can be intersected by one
contact. This means that the voxelization algorithm is opti-
mal in space and complexity. Indeed, we consider voxels as

elements of the atlas only in step 4.1.2, but from Appendixes
1 and 2 it follows that all those voxels are inside the cylinder
or they intersect it. An additional advantage is that for each
(x, y) we find the whole column of voxels intersected by the
cylinder, which substantially speeds up the PFA generation.

2.2.7. Probability Computation

To compute atlas probability, the atlas function has to be
suitably scaled. We propose two scaling approaches: (1) intu-
itive, easy to understand and use by clinicians, and (2) for-
mal, defined in a mathematical sense.

Let V denote the integral of a(x, y, z) over the whole space,
N be the total number of best contacts, MAX denote the
maximum value of atlas a(x, y, z), and CONST denote a
constant value that corresponds to some assumed MAX.
Probability p(x, y, z) of a given structure at point (x, y, z) can
be calculated in one of the following ways: 1. p(x, y, z) � a(x,
y, z)/N. 2. p(x, y, z) � a(x, y, z)/MAX. 3. p(x, y, z) � a(x, y,
z)/CONST. 4. p(x, y, z) � a(x, y, z)/V.

Probability definition 1 gives the fraction of the best con-
tacts within the structure to the total number of contacts
used to study this structure. Probability definition 2 indi-
cates the fraction of the best contacts to the maximum spatial
frequency of the contacts. Probability definition 3 tells what
is the fraction of the best contacts to some assumed maximal
density, which the user can set to determine the level of
confidence to his data. These definitions do not fulfill the
mathematical definition of probability; however, they are
useful practically. Probability definition 4 is in a mathemat-
ical sense; however, its clinical meaning is not obvious.

The best target is calculated as the region where the prob-
ability of a given structure is maximum.

2.3. Analytical Representation

The above algorithm calculates a useful distribution of a
studied structure provided that the number of best contacts
employed is sufficiently high. For instance, assuming a uni-
form distribution of the best contacts within a structure,
their number should be bigger than the ratio of the volume of
the structure to the volume of the contact. When the number
of the available best contacts is not sufficient, the originally
calculated atlas is not smooth in terms of shape and value,
and it may not be determined (remain zero) in some regions
(Fig. 8). In this case, the values of the atlas can be treated as
samples with Gaussian distribution from which a smooth,
analytical atlas is reconstructed.

Denoting

V � �
��

�� �
��

�� �
��

��

a�x, y, z�dxdydz,

we introduce the joint probability density of a random vector

w � �x
y
z
�FIG. 7. The contact modeled as cylinder placed in a discrete

(voxelized) space.
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by

p�x, y, z� �
a�x, y, z�

V
. (3)

Without loss of generality, let us consider x coordinate. Then

�x � �
��

��

xp�x�dx

is the mean value of x,

�x � ��
��

��

�� � ���
2p�x�dx

is the standard deviation of x, and

p�x� � �
��

�� �
��

��

p�x, y, z�dydz

is the marginal probability density of x. Thus, we create a
trivariate Gaussian with the joint probability density

g�x, y, z� � g�w� �
1

��2��3�M�
e �1/2�w � �� TM �1�w � ��, (4)

where

� � ��x
�y
�z
� and M � ��x

2 mxy mxz

mxy � y
2 myz

mxz myz � z
2
�

is a nonsingular second moment matrix. By using Eqs. 3 and
4, we determine the analytical atlas function as

a�x, y, z� � Vg�x, y, z�. (5)

From the properties of the normal distribution it follows that
a structure is represented geometrically as a three-dimen-
sional ellipsoid with center in � and semiaxis vectors

FIG. 8. Probabilistic functional atlas: (a) (left) STN sagittal slice calculated with 0.5-mm resolution from 303 contacts; (right) corre-
sponding analytical slice; (b) (left) VIM coronal slice calculated with 0.25-mm resolution from 111 contacts; (right) corresponding analytical
slice; (c) (left) 3D STN calculated with 0.25-mm resolution from 303 contacts; (right) corresponding analytical structure; (d) 3D STN, VIM,
and GPI structures calculated with 0.5-mm resolution presented as semitransparent objects with the opacity proportional to the probability;
(e) probability color palette.
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�3�x

vx

�vx�
, 3�y

vy

�vy�
, 3�z

vz

�vz�
� ,

where

M �1 � �
v x

T

v y
T

v z
T���x 0 0

0 �y 0
0 0 �z� �vx, vy, vz�, ��x

�y
�z�

are eigenvalues of M�1, and (vx, vy, vz) are eigenvectors of M�1

(Fig. 8).
Having calculated g(x, y, z), we have to check how adequate

the created Gaussian model g(x, y, z) is to the original prob-
ability p(x, y, z). For this purpose, one can use the Pearson �2

test [18] or the Kolmogorov–Smirnov test [18]. If g(x, y, z)
does not satisfy any of these tests, multiple Gaussian mod-
eling can be attempted. By clustering the atlas voxels [33], a
Gaussian model can be formulated for each cluster.

3. RESULTS AND DISCUSSION

An efficient algorithm for the calculation of the PFA has
been developed and validated. The PFA has been constructed
from the electrophysiological and neuroimaging data col-
lected for the most popular stereotactic targets, including the
subthalamic nucleus (STN), globus pallidus internus (GPI),
and ventral intermedius nucleus (VIM). Figure 8 shows some
2D (slices) and 3D (volumetric models) examples of the cal-
culated and analytically represented atlas structures.

The complexity of this algorithm is proportional to the
number of best contacts and the number of voxels (i.e., it
depends on atlas resolution, which can be set by the user

interactively). The complexity of (single) Gaussian modeling
is proportional to the number of voxels and does not depend
on the number of best contacts. The performance of calcula-
tion of the PFA is summarized in Table 1. With the current
population of 500 best contacts, the atlas is calculated in near
real-time.

The construction of probabilistic atlases is an active area of
research [17, 20, 21, 43, 45]. Probabilistic atlases store infor-
mation on anatomical and functional variability in a popula-
tion, such as how the brain varies in health [5, 31] and
disease [42] as well as across gender, age, and time. Figure 9
illustrates our attempt to classify these efforts. The anatom-
ical probabilistic atlases may store information on the vari-
ability of a sulcus or gyrus [5, 17, 31] or be surface-based [47]
or volumetric [8]. This subdivision corresponds roughly to
variations in one-, two-, and three-dimensional manifolds.
The differences between them, however, may not be distinc-
tive enough. For instance, a sulcus may be modeled as a
ribbon (2D surface) [17] or dynamic changes in the brain can
be stored as 4D maps.

Existing tools, such as BrainMap [12] or Brain Atlas for
Functional Imaging [29], facilitate metanalysis allowing for
construction of probabilistic functional atlases from radio-
logic images. The resolution of fMRI or PET images, however,
is low (several millimeters) and the size of activation regions
may be quite large. On the other hand, a microelectrode is
able to measure the signal from a single neuron. In our
approach, the accuracy of the collected data is 0.2–0.3 mm,
while the resolution of the calculated atlas is user-dependent.
As the calculation of an atlas is fast (Table 1), the user can
recalculate it easily. Practically, we compute and manipulate
the atlas with 0.25-mm (for a single structure) or 0.5-mm (for
multiple structures) resolutions on a standard personal com-
puter.

To the best of our knowledge, the PFA created by us is the
first volumetric probabilistic functional atlas developed. A
related effort is the development of an electrophysiological
database of deep brain functional anatomy [10]. It exploits a
coding structure [41] facilitated through the use of a novel
graphical interface. The database stores points with related
information mapped along stereotactic trajectories. From a
surgical perspective, this approach has several limitations. It
does not take into account the geometry of electrodes. The
postoperative data are not available (the surgical procedure
involves permanent therapeutic lesioning as opposed to the
deep brain stimulation employed in our approach). The use of
preoperative MRI only may result in geometric distortions

TABLE 1

Performance of the PFA Calculation

Atlas resolution
(seconds)

0.5 mm 0.25 mm

PFA calculation from 10000 simulated best
contacts 1.352 5.498

PFA calculation from 20000 simulated best
contacts 2.614 10.906

Analytical representation 1.192 6.379

FIG. 9. Taxonomy of probabilistic atlases.
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(potentially to several millimeters), while we additionally
employ X rays resulting in 0.2–0.3 mm accuracy. On the
other hand, the availability of volumetric data such as MRI
allows for applying nonlinear warping, which is critical when
dealing with cortical structures (but, as referenced below,
practically negligible for subcortical structures) and the ap-
proach [10] exploits the ANIMAL algorithm for this purpose.
Unfortunately, this algorithm does not take into account the
locations of the AC and PC, which results in a substantial
error for the deep brain structures. The error due to inaccu-
rate location of the AC and PC is up to 5 mm [24] and the lack
of identification of the intercommissural landmarks may re-
sult even in a higher error.

The resulting PFA depends on contact spatial normaliza-
tion; however, voxelization of contacts is normalization-inde-
pendent provided that the warping function satisfies Defini-
tion NL. Alternatively, one can use a region growing-type
voxelization to find all voxels which intersect a cylinder start-
ing from a “seed” voxel inside the cylinder. This approach
supports any warping homeomorphism but it is not optimal,
as all necessary voxels and unnecessary ones, but neighbor-
ing them, have to be checked against Conditions 1 and 2
(Appendix 2).

The atlas calculation is a linear operation, so merging
PFAs or updating a PFA with the new data is fast and
efficient. This opens avenues in building applications provid-
ing neurosurgical community services [25].

Calculation of the PFA is very fast. The current data,
collected for several years by the third author, can be pro-
cessed remotely (by our public domain application, see below)
in a few seconds. Any update of the PFA can be done remotely
in near real-time. This makes the algorithm useful for web-
based applications.

A detailed validation of the algorithm using the Monte
Carlo method (which is beyond the scope of this paper) exists
(Belov, D., and Nowinski, W. L. Optimal voxelization of a
deformed cylinder, submitted for publication). In addition,
we have developed a portal for planning stereotactic and
functional neurosurgery procedures based on this algorithm
(available for public use from www.cerefy.com) described in
[49].

The proposed method has several limitations in terms of
data acquisition, related neurosurgical procedures, designed
algorithm, and application scope. Data acquisition is invasive
and the method is not applicable to healthy (normal) individ-
uals. The method, however, can also be applied to study
animals. Another data acquisition-related limitation is the
use of X-ray ventriculography to determine the accurate lo-
cations of the landmarks. Ventriculography is invasive and it
is less preferred than preoperative MRI or CT imaging. For
instance, a survey in [9] shows that MRI alone was used in
50% of the studied centers while ventriculography in combi-
nation with MRI in only 18%. The method is able to handle
the landmarks obtained from imaging modalities other than
ventriculography; however, the generated functional maps
will not be so accurate (as the 0.25-mm achieved here) be-
cause of the limited image resolution and geometric distor-
tions. The data used to calculate the probabilistic functional
atlas have been acquired only for Parkinson’s disease pa-

tients. A similar surgical procedure is performed in psycho-
surgery and for treatment of several other disorders, includ-
ing epilepsy, pain, and movement disorders such as dystonia
or tremor (there are about 300 of them). Hence, the data
collected during these procedures can also be used to calcu-
late the probabilistic functional maps of subcortical struc-
tures. On the other hand, the algorithm is not applicable to
many other brain disorders, such as Alzheimer’s disease,
attention deficit–hyperactivity disorder, Huntington’s dis-
ease, or schizophrenia.

The currently generated probabilistic functional maps are
limited to the most popular stereotactic target structures,
i.e., STN, GPI, and VIM. However, the algorithm is quite
general and it is able to calculate functional maps for other
subcortical structures provided the data are available.

The algorithm is limited to electrodes with cylindrical con-
tacts, which practically is not a real shortcoming as the
currently employed electrodes have cylindrical contacts (mo-
nopolar and quadripolar DBS 3387, 3389, Medtronic, Minne-
apolis). A more serious limitation is that the algorithm mod-
els the activation region to correspond to the shape of the
contact, which is a simplification. A more advanced model
requires knowledge of the electrophysiological properties of
brain tissues and electrical properties of electrodes. The spa-
tial normalization of contacts’ positions is linear. Theoreti-
cally, nonlinear warping would be superior [44]. Practically,
within the region between the AC and PC, where the stereo-
tactic targets are located, the difference between the linear
and nonlinear warping is negligible [7]. We think that a
suitable definition of landmarks [28] and their accurate po-
sitioning [24] are rather more important for an overall accu-
racy.

The choice of landmarks is another area of potential im-
provement. Ventral scaling of STN based on the height of the
thalamus is questionable. STN, when scaled anteroposteri-
orly, may be correlated more to other than the AC or PC
landmarks in a region around the floor of the third ventricle.
Lateral compensation against the width of the third ventricle
is typically applied for GPI and VIM, but in case of STN this
compensation increases its standard deviation (which is not
desirable from a spatial normalization point of view). A struc-
ture-dependent normalization might be better; however, this
would not facilitate building a probabilistic functional atlas
consistent across all subcortical structures.

The generated maps allow calculating the volume of func-
tional structure and studying the spectrum of its probabili-
ties for the operated groups of patients but not for normals.
Therefore, effects of neurodegenerative disorders of brain
volume and function cannot be studied for humans. However,
the algorithm, when applied to animal data, will be able to
facilitate addressing these problems.

In summary, the features of our method include the follow-
ing: the algorithm is optimal, efficient, and fast; an analytical
model is developed which gives flexibility in discretization; a
smooth (analytical) atlas can be optionally generated if the
number of best contacts is not sufficient; different atlases can
easily be merged, which facilitates fast updates; the user is
able to interactively control the resolution of the generated
atlas; the algorithm is suitable for remote operations, as the
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atlas calculation is fast; and the method is limited to subcor-
tical structures and functional neurosurgery procedures em-
ploying electrodes with cylindrical contacts.

The PFA overcomes the limitations of the current elec-
tronic brain atlases available in most of image-guided neu-
rosurgery systems [25] and it will potentially replace them in
the future. The method also serves as a framework for build-
ing the probabilistic functional atlas of all subcortical struc-
tures from combined electrophysiological and neuroimaging
data. Finally, an analysis of the probabilistic functional maps
generated by using the proposed algorithm constitutes a
general method for studying functional properties of subcor-
tical structures.

APPENDIX 1

Finding the Minimum and Maximum of Three Coordinates
of a Cylinder

It is obvious that the minimum and maximum of the three
coordinates of a cylinder are on its top and bottom layers (Fig.
10). A given point c (Fig. 10) is on the top layer of the cylinder
because: (1) the angle between vectors ab and bc is right, (2)
the length of vector bc is less than or equal to the radius of
the cylinder r.

Let us consider the bottom layer first to find the minimum
and maximum values for the three coordinates. Then, we
have

� �x � x1��x2 � x1� 	 �y � y1��y2 � y1� 	 �z � z1��z2 � z1� � 0
�x � x1�

2 	 �y � y1�
2 	 �z � z1�

2 � r 2 
 0 .

(6)

Let us find the minimum and maximum of x. As the aim
function x and the functions in Eq. 6 are convex and differ-
entiable, the following optimization problem is a problem of
convex programming [13]

x3 extremum

� �x � x1��x2 � x1� 	 �y � y1��y2 � y1� 	 �z � z1��z2 � z1� � 0
�x � x1�

2 	 �y � y1�
2 	 �z � z1�

2 � r 2 
 0 .

(7)

The corresponding Lagrange function is

f � x 	 �1��x � x1��x2 � x1� 	 �y � y1��y2 � y1� 	 �z � z1��z2

� z1�� 	 �2��x � x1�
2 	 �y � y1�

2 	 �z � z1�
2 � r 2�.

Let us find the stationary points of f which, if they exist, are
the solutions of the problem. For this purpose, we solve

	
�f

�x
� 0

�f

�y
� 0

�f

�z
� 0

�f

��1
� 0

�f

��2
� 0

. (8)

By solving Eq. 8 we get

x � x1 � r� �y2 � y1�
2 	 �z2 � z1�

2

�x2 � x1�
2 	 �y2 � y1�

2 	 �z2 � z1�
2

. (9)

The same approach is applied to find the minimum and
maximum of y and z. Let


 �
x2 � x1

h
, � �

y2 � y1

h
, � �

z2 � z1

h
.

Then considering also the top layer, we can derive the ex-
treme value in the top xt, yt, zt and bottom layer xb, yb, zb as

xt � x2 � r��� 2 	 � 2�, yt � y2 � r��
 2 	 � 2�, zt � z2

� r��
 2 	 � 2�

xb � x1 � r��� 2 	 � 2�, yb � y1 � r��
 2 	 � 2�, zb � z1

� r��
 2 	 � 2�. (10)

Thus, the minimum and maximum values of the three coor-
dinates can be obtained from Eq. 10. Finally, we get (1)
minimum values, nx � min(xb, xt), ny � min(yb, yt), nz �
min(zb, zt) and (2) maximum values, mx � max(xb, xt), my �
max(yb, yt), mz � max(zb, zt).FIG. 10. Bottom and top layers of the cylinder.
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APPENDIX 2

Finding the Limits of the Third Coordinate for the
Given Two Others

Assume that x and y are fixed. We are looking for the limit
of z coordinate [zmin, zmax] such that the whole segment ef,
where e � (x, y, zmin) and f � (x, y, zmax), is inside the cylinder.

Any point x�, y�, z� lying on the axis of the cylinder (see
segment ab in Fig. 6) has the following relationships with the
superior and inferior tips.

�x� � x1 	 t�x2 � x1�
y� � y1 	 t�y2 � y1�, 0 
 t 
 1
z� � z1 	 t�z2 � z1�

. (11)

For any point x, y, z lying in the plane perpendicular to axis
ab, the scalar product of vectors (x � x�, y � y�, z � z�) and ab
must be 0. Hence (x2 � x1) (x � x�) � (y2 � y1) (y � y�) � (z2 �
z1) (z � z�) � 0.

By using Eq. 11 to replace x�, y�, z�, we get the equation for t

t �
�x � x1��x2 � x1� 	 �y � y1��y2 � y1� 	 �z2 � z1�

�x2 � x1�
2 	 �y2 � y1�

2 	 �z2 � z1�
2

�
�x � x1��x2 � x1� 	 �y � y1��y2 � y1� 	 �z � z1��z2 � z1�

h 2
.

(12)

Since 0 
 t 
 1, point x, y, z must satisfy (Fig. 11) Condition 1

0 

�x � x1��x2 � x1� 	 �y � y1��y2 � y1� 	 �z � z1��z2 � z1�

h 2


 1.

The distance from x, y, z to x�, y�, z� must be less than or equal
to r. Thus, we get the next condition for x, y, z (Fig. 12),
Condition 2

�x � x1 � t�x2 � x1��
2 	 �y � y1 � t�y2 � y1��

2 	 �z � z1

� t�z2 � z1��
2 
 r 2.

Figure 13 illustrates a principle of determining the range
of z for the fixed x and y. First, plane P is set such that it is
parallel to plane XZ and passes through the fixed point (x, y,
0). Next, the following calculations are done on plane P: 1.
From Condition 1, we get the z range [z1, z4]. 2. From Con-
dition 2, we get the z range [z2, z3]. 3. The calculated limit is
[zmin, zmax], where zmin is the maximum of z1 and z2, and zmax is
the minimum of z3 and z4. So finally, the range is [z2, z3].

FIG. 11. Illustration of Condition 1: any point (x, y, z) belonging
to the cylinder must be located between two planes containing the
top and the bottom layers of the cylinder. Points d, e do not satisfy
Condition 1 as they are not between planes Top and Bottom. Point c
satisfies Condition 1 as it is between planes Top and Bottom.

FIG. 12. Illustration of Condition 2: the distance between any
point (x, y, z) belonging to the cylinder and the line going through
segment ab should be less than or equal to the radius of cylinder r.
Points d, e do not satisfy Condition 2 as the lengths of segments dd�,
ee� are bigger than the radius of cylinder r. Point c� satisfies Condi-
tion 2 as the length of segment cc� is smaller than the radius of
cylinder r.

FIG. 13. Illustration of the principle for finding the z range.
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From Condition 1, we get the condition for z as

��x � x1�k1 � �y � y1�k2

k3

 z � z1



h 2 � �x � x1�k1 � �y � y1�k2

k3
,

where k1 � x2 � x1, k2 � y2 � y1, k3 � z2 � z1. That gives the
range of z as Condition 3

z1 	 D 
 z 
 z1 	
h 2

k3
	 D,

where

D �
��x � x1�k1 � �y � y1�k2

k3
.

Replacing t in Condition 2 by using Eq. 12 we get

��x � x1��h 2 � k 1
2� � k1k2�y � y1� � k1k3�z � z1��

2 	 ��y � y1�

�h 2 � k 2
2� � k1k2�x � x1� � k2k3�z � z1��

2 	 ��z � z1�

�h 2 � k 3
2� � k1k3�x � x1� � k2k3�y � y1��

2 
 r 2h 4,

Denote by

A � �x � x1��h 2 � k 1
2� � k1k2�y � y1�, a � k1k3,

B � �y � y1��h 2 � k 2
2� � k1k2�x � x1�, b � k2k3,

C � �k1k3�x � x1� � k2k3�y � y1�, c � �k 3
2 � h 2�.

Then, the considered inequality can be rewritten as

�A � a�z � z1��
2 	 �B � b�z � z1��

2

	 �C � c�z � z1��
2 
 r 2h 4

�a 2 	 b 2 	 c 2��z � z1�
2 � 2�aA 	 bB 	 cC��z � z1� 	 A 2

	 B 2 	 C 2 
 r 2h 4

�z � z1�
2 � 2

aA 	 bB 	 cC

a 2 	 b 2 	 c 2
�z � z1�



r 2h 4 � �A 2 	 B 2 	 C 2�

a 2 	 b 2 	 c 2

�z � z1 �
aA 	 bB 	 cC

a 2 	 b 2 	 c 2 � 2



r 2h 4 � �A 2 	 B 2 	 C 2�

a 2 	 b 2 	 c 2

	 �aA 	 bB 	 cC

a 2 	 b 2 	 c 2 � 2

.

Let

H �
aA 	 bB 	 cC

a 2 	 b 2 	 c 2
and L �

r2h 4 � �A 2 	 B 2 	 C 2�

a 2 	 b 2 	 c 2
	 H 2.

Hence, we get the condition for z as Condition 4

z1 	 H � �L 
 z 
 z1 	 H 	 �L.

By combining Conditions 3 and 4, we get the range of z,
Condition 5,

n z
�x,y� 
 z 
 m z

�x,y�,

where

n z
�x,y� � max�z1 	 H � �L, z1 	 D�

m z
�x,y� � min�z1 	 H 	 �L, z1 	

h 2

k3
	 D� .

For z to be in its range, L � 0. If L 	 0, both x and y must have
the extreme values such that there is no corresponding z
within the cylinder.

We also consider special cases. In Case 1, k3 � 0. Then

a � 0, b � 0, c � �h2, C � 0, H � 0,

L �
�r 2h 4 � �A 2 	 B 2��

c 2
.

Taking into account Condition 1, we have D � (x � x1)k1 �
(y � y1)k2. If 0 
 D 
 h2 and L � 0, then z1 � 
L 
 z 
 z1 �
L. In Case 2, k1 � 0 and k2 � 0. Then A � (x � x1)h2, a � 0,
B � (y � y1)h2, b � 0, C � 0, c � 0, L � r2h4 � (A2 � B2). The
sign of L has to be checked (as (x � x1)2 � (y � y1)2 
 r2) and
if L � r2 � (x � x1)2 � (y � y1)2 � 0, then z1 
 z 
 z2.
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