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Construction and assessment of a 3-T MRI brain template
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New MR imaging protocols enable visualization of brain structures. However, for dedicated clinical
applications such as targeting deep brain stimulation (DBS), a more accurate localization requires the use of
atlases. We developed a three-dimensional digitized mono-subject anatomical template of the human brain
based on 3-T magnetic resonance images (MRI). By averaging 15 registered T1 image acquisitions, we have
shown that the final image corresponds to an optimal image, limited by the performance of the 3-T MR
machine. We compared different preprocessing workflows for template construction. With the optimal
strategy, along with validated existing processing methods, one T1 template and one T1–T2 mixing template
were created in order to improve visualization of spatially complex deep structures. Reduction of voxel size
to 0.25 mm3 was also advantageous to observe fine structures and white matter/gray matter intensity
crossings. Results demonstrated that such a template also improved inter-patient registration for population
comparison in DBS. These MR templates are made freely available to our community (http://www.vmip.
org/mritemplate) to serve as a reference for neuroimage processing methods.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The development of medical imaging equipment is driving
increased demand for reference data sets. Anatomical reference
images are becoming of vital importance for comparison of results,
to achieve optimal spatial and intensity resolution, and to allow better
identification of structures. As reference images, templates are
defined as anatomical models built from multiple volume averaging.
They can be mono- or multi-subject ones and are generally based on a
single modality. Atlases are derived from templates but can be built
from different modalities and are most often characterized by specific
structure labeling. Paper-based atlases were originally obtained from
experts in anatomywhomanually drew and labeled reference images.
For instance, atlases of the human brain turn out to be very helpful for
various procedures. Printed atlases by Schaltenbrand and Wahren
(1977), Talairach and Tourmoux (1988), or Ono et al (1990) have
been used with success in various computer-aided decision systems.
Today, digital atlases are directly built from digital images and offer
new capabilities and applications. Nowinski et al (1997) used a
combination of these three digitized print atlases to develop a digital
atlas, which has been used for surgical planning and intraoperative
support. Such atlases are also used as anatomy teaching tools, by
S, IRISA, Campus de Beaulieu,
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providing interactive labeling of structures and high image resolution
and contrast. In image analysis, deformable atlases provide a powerful
tool for image segmentation, by exploiting constraints derived from
the image data together with a priori knowledge of structure
parameters (Zhou and Rajapakse, 2005). Elastic registrations to a
template of the organ of interest are also very useful, enhancing the
objectivity of image interpretation (Friston et al., 1995). Finally,
templates may serve as a common space for population comparisons
studies.

Digital templates can be classified according to the number of
subjects used for the computation. Multi-subject templates aremainly
built from a single acquisition of different control subjects reflecting
the population targeted by the clinical study (Seghers et al., 2004; Lee
et al., 2005). Such multi-subject templates are primarily intended to
serve as anatomical references for spatial normalization usually
required before studying human anatomical or functional variability.
A prominent example is the multimodal template used in SPM
(Statistical Parametric Mapping, Institute of Neurology, University
College of London, UK; Evans et al., 1993). The construction of
smoothed multiple subject templates captures intersubject variabil-
ity, but their use for alignment could hinder the representation of
targets in a common space.

Single-subject templates strive to attain optimal spatial resolution.
Different strategies have been followed for defining such templates.
The first strategy was the use of coregistered monomodal or
multimodal acquisitions of a single particular subject mainly based
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on MR acquisitions. The Colin27 MRI brain template (Holmes et al.,
1998) has been used in various neurosurgical applications. For
instance, St-Jean et al. (1998) created a deformable volumetric
template of the basal ganglia and thalamus in combination with the
Schaltenbrand and Wahren atlas in order to estimate template-to-
patient transformations. It has also been used to create probabilistic
functional templates, like the one by Finnis et al (2003) for the
combination of intraoperative data with MRI data or to validate
template warping techniques (Chakravarty et al., 2008). The second
strategy was the combination of images and histological templates
(Yelnik et al., 2007; Chakravarty et al., 2006). The interest of the first
strategy is that the whole clinical acquisition setup is applied to
healthy, living control subjects, and they prove to be quite feasible in
practice. Histological templates have advantages like higher structural
and spatial resolutions. However, they turn out to be very complicated
and lengthy to produce. Finally, templates following the first strategy
are based on the average of all registered volumes, which enhances
the quality of the final template by increasing signal-to-noise ratio
(SNR) and contrast, essentially between gray matter (GM) and white
matter (WM). These templates are constrained by both the resolution
and the quality of available imaging technologies.

Digital templates need to be evaluated and extensively validated
as they are used for anatomical reference images in various
applications. It is crucial to assess the quality of the images by
quantifying their parameters, from the contrast resolution to the
signal-to-noise ratio (SNR). Many parameters come into the creation
of a template, including the MR machine's intrinsic settings, the
number of scans to be averaged, the preprocessingmethods, the order
of preprocessing, and the processing parameters. All of these
parameters have to be optimized in order to create the template
with the optimal construction strategy. The Colin27 MRI brain
template has been lightly validated in the original work of Holmes
et al. (1998) by computing intensity profiles to demonstrate the
improvement in image quality, but no such studies have been
performed in depth. Moreover, templates have to be validated in a
clinical context to assess its actual added value. In neurosurgery, they
are widely used for surgical planning and targeting, especially in DBS
(deep brain stimulation). DBS is a procedure for patients with
movement disorders (e.g., Parkinson's disease) for which medical
therapy is not effective. It uses electrical impulses to stimulate targets
(often the subthalamic nucleus, STN) in the brain. For such
neurosurgical procedures, identification of basal ganglia on patient
specific images is not always possible because of the lack of contrast
between structures. The use of digital atlases has helped in addressing
this problem as deep brain structures are more visible and allowmore
accurate targeting.

In this article, we present how we built and assessed MRI
templates using a one-subject average of volumes acquired with off-
the-shelf medical image protocols, and processed with up-to-date
image processing methods. The objective is to create one T1 template
with an optimal construction strategy that we will validate in this
paper. This framework relies on the fact that the quality of the
template increases with the number of volumes averaged, as
demonstrated by Holmes et al. (1998), on condition that every
volume is perfectly defined in the same common space. The quality
reaches a maximum that would theoretically correspond to an MRI
without noise and intensity inhomogeneities. We chose to use image
Table 1
Dates of scan sessions.

No. of session 1 2 3

Date of session 08/07/04 08/07/11 08/07/30
Number of T1 acquisitions 5 5 1
Number of T2 acquisitions 2 1 0
processing methods that have already been validated in the medical
imaging context along with fixed MR machine parameters. However,
we evaluated the impact of the order of image preprocessing, the
number of scans required to reach an optimal image, and the overall
evolution of image quality. We showed quantitative results using
different complementary criteria demonstrating the effectiveness of
the best strategy. Then we studied the impact of template choice in a
nonlinear registration task in a deep brain stimulation (DBS) context.
Finally, using the optimal strategy, we constructed a T2 template in
order to create a multimodal brain template by mixing T1- and T2-
weighted data for better visualization of deep brain structures. The
basic principle was to retain helpful information from T2, i.e., deep
brain structures (such as basal ganglia), and to merge this region of
interest (ROI) with the remaining T1 MRI area. The T1 template aims
at helping patient-to-template image registration applied in neuro-
surgical procedures, whereas the T1–T2 mixed template aims at
identifying basal ganglia.

Material and methods

Image acquisition

The subject was a 45-year-old man without any clinical pathology.
Absence of brain pathology was checked by a neuroradiologist on the
two first sets of MR images. Fifteen T1-weighted sequences and 7 T2-
weighted sequences were performed on a Philips Achieva 3T system
(Philips Medical Systems, Best, The Netherlands) using an 8-channel
head coil, on the dates in Table 1. For the selected T1-weighted
sequence, the parameters were 3D Fast Field Echo Sequence, sagittal
acquisition, 160 continuous slices, section thickness=1 mm, field of
view=256 mm, TR/TE/TI=9.8/4.6/915 ms, flip angle=8°, SENSE
factor=1.5, matrix=256×256 (acquisition), 512×512 (after zero-
fill interpolation), voxel size=0.5×0.5×1 mm, and acquisition
time=5 min 05 s. For the selected 2D T2-Weighted sequence, the
parameters were 2D Turbo Spin Echo Sequence, coronal acquisition,
64 continuous slices, section thickness=1 mm, field of
view=256 mm, TR/TE=3035/80 ms, flip angle=90°, echo train
length=15, matrix=256×256, voxel size=1×1×1 mm, and
acquisition time=7 min 17 s.

There was minimal patient motion between acquisitions within
the same session, except for the eighth where the subject got out of
the machine between the two scans in order to simulate two different
sessions. In each session, a first Talairach repositioning was performed
before launching scans to fit the x-axis with AC–PC. Each session took
place between 1PM and 2PM, just after lunch, endeavouring to keep
the same physiological patient conditions. DICOM images were stored
on dedicated CDs.

Preprocessing

For the study of the preprocessing impact, MR images were
denoised with the nonlocal means algorithm (Coupé et al., 2008),
which has been successfully validated on 3-TMR images (Coupé et al.,
2006). The bias correction algorithm used was based on intensity
values (Mangin, 2000) and applied using BrainVisa software (CEA,
Orsay, France, http://brainvisa.info), which was well adapted for 3-T
MR images (Vovk et al., 2007). An intensity normalization step was
4 5 6 7 8

08/07/31 08/08/01 08/09/19 08/09/29 08/11/27
1 1 1 1 0
0 0 1 1 2
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not necessary since all images were acquired in accordance with the
same protocol, on the same subject.

Construction of the templates

Registration
One T1 native image was randomly chosen to be the target for

registration. We realigned the target volume to have the AC–PC line
on y-axis and the mid-sagittal plane on the z-axis. All volumes (T1
and T2) were then linearly registered to the target (rigid
registration, cost function: Mutual Information, NEWUOA optimi-
zation (Wiest-Daesslé et al., 2007)). Every native image was defined
in the same common space, which allowed us to perform the
average.

Average
We used a method called kappa-sigma clipping average (Jorsater,

2006). This method, largely used in astronomy, finds and deletes
pixels that are significantly different from the median. Median and σ
were first computed for each voxel of the image. A threshold was
then applied to reject all the voxels with an intensity superior to
median±kapp⁎σ. This method helped reduce the influence of
outliers, which are caused by the patient or external factors, e.g.,
scanner table vibrations (Bernstein et al., 2004). Values of kappa of
two or three are usually used in the literature (Newberg et al.,
1999). Moreover, internal studies have shown that the quality of the
template was unchanged from a value of kappa of 1.8. We chose this
value and rejected approximately 2% of all voxels and possible
outliers.

Subsampling
Resulting averaged volumes were subsampled, using a cubic B-

Spline algorithm. For the T1 template, a twofold reduction was
computed for the x- and y-axes, and a threefold reduction for the z-
axis. For the T2 template, a fourfold reduction was computed for all
axes, so that we obtained a 0.25 mm3 voxel volume size for both
templates.

T1+T2 fusion
T2-weighted images provide information on deep brain structures

that are not visible in T1-weighted images. In order to take advantage
of both MR protocols, we computed a mixed T1+T2 template as
follows. We first inversed the intensity of the T2 images in order to fit
the WM/GM crossings and the global contrast of the T1 images. An
expert defined a bounding box containing basal ganglia, similar to the
one described in Chakravarty et al. (2008). Image intensities from T2
images were kept inside the bounding box; the remaining signal was
derived from the T1 images. The final step included boundary
smoothing. We deliberately applied a low level of smoothing to
reveal the boundaries between both modalities.

Effectiveness of the strategy

In order to perform a first visual assessment on the contrast
quality, we used the intensity profile. This nonquantitative criterion
was extracted from the native nonpreprocessed image and from the
15-volume average. The section was taken in the coronal planes
through WM and GM.

The image quality evaluation studies for the T1 template were
based on five quality criteria that allowed comparing the final 15-
volume average (used as a reference for the evaluation studies) with
the intermediate N-volumes average in order to evaluate and quantify
the evolution of improvement. We initially used image intensity
correlation (QC1) and mutual information (QC2), defined in the
whole brain. These criteria are both based on intensity values and are
widely used in medical image processing to evaluate differences
between two images. We then used the signal-to-noise ratio (SNR)
(QC3), defined by:

SNR = 10:log
255
MSE

� �

where MSE is the mean square error between the reference volume
(the 15-volume average image) and the intermediate volume.
Another possibility for estimating the SNR was to compute the signal
on a region of interest (ROI) divided by the standard deviation of the
background noise, which is usually defined outside the anatomy on a
MR image. This one, after preprocessing and few volume averages,
was null, which made impossible to perform a global study until the
15-volume average image. For this reason, we preferred using the first
formula for the estimation of the SNR.

Another vital quality parameter is the contrast, essentially
between WM and GM. Similarly to SNR, the usual contrast equation
(Fushimi et al., 2007) supposes to compute the standard deviation of
the background noise, so it is not applicable to our studies. To quantify
it, we computed the acutance (QC4) (Choong et al., 2003), which is
the edge contrast of an image:

Ac =
G

xGM − xWM

where G is the mean density gradient between GM and WM, and
xGM−xWM is the distance between GM and WM regions. It represents
the amplitude of the derivative of brightness with respect to space,
and approaches the definition of the sharpness of the image. In
addition, the gradient term adds a notion of distance that is essential
in the concept of contrast. A simple Cd = SGM − SWM

D contrast difference
(QC5) was also computed, where D is the dynamic range of the image,
SGM is the signal in the GM region and SWM the signal in the WM
region. For the computation of the acutance and the contrast, GM and
WM regions of frontal lobes and basal ganglia (e.g., putamen,
thalamus) were selected as ROIs by a neuroradiologist. A total of 10
WM/GM intensity crossings were chosen in order to obtain an overall
representative contrast. In each average step, the same ROIs were
applied.

To study the impact of preprocessing, we performed the same
studies for (1) the native images without preprocessing, (2) images
with denoising only, (3) images with bias correction only, (4) images
with bias correction followed by denoising, and (5) images with
denoising followed by bias correction. The average was computed
with the volumes in the same order as their acquisitions. All volumes
were warped on the reference target with the transformations
computed in the registration step used for the construction of the
templates.

We performed two final studies using correlation criterion to
assess the impact of the order of images in template construction. The
first study compared the average of five images from the same session
with five from different sessions. For this study, the evaluation
reference was the final 5-volume average. Similarly, the second study
compared a randomized selection of acquisitions with the temporal
ordered selection.

Intrasubject registration validation
As the quality of the final templatewas dependent on the quality of

the intrasubject image registration, we studied all native T1 registra-
tions with the T1 target. Nine anatomical landmarks were defined by a
neurosurgeon (C.H.) and identified on each floating and reference
image. Five of them (Fig. 1) were defined within the bounding box
describe in the construction of the templates: the anterior and
posterior commissures (AC and PC, points 1 and 3, respectively), the
interthalamic adhesion on the middle of the axial slice (point 2), the
infundibular recesse (point 4), and themiddle between themamillary



Fig. 1. One native image with the five anatomical landmarks of the bounding box. Point 1: the anterior commissure (AC). Point 2: the interthalamic adhesion on the middle of the
axial slice. Point 3: the posterior commissure (PC). Point 4: the infundibular recesse. Point 5: the middle between the mamillary bodies on the axial slice just above the last
visualization of the optic chiasma.
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bodies on the axial slice just above the last visualization of the optic
chiasma (point 5). The four others are the left and right carotid
division into anterior and middle cerebral arteries, and the middle of
the origin of the trigeminal nerve (also left and right). The Euclidean
distance for each landmark defined in both images was computed, in
order to obtain the global misplacement error. A similar study was
performed to assess the T2 to T1 registration.

Validation for clinical studies

We studied the impact on patient-to-template image registration
of our final template compared with the improved version of the
Colin27 template (Aubert-Broche et al., 2006) and with a native 3-T
scan. We applied the same registration workflow to a set of 15
patients with idiopathic Parkinson's diseases (Lalys et al., 2009). The
preoperative T1 MR images of each patient were used. All subjects
had STN DBS according to selected inclusion criteria (Lang and
Lozano, 1998; The DBS for Parkinson's Disease Study Group, 2001).
Examinations were performed on a 3-T whole-body imager
(Achieva, Philips Medical Systems, Best, The Netherlands) by using
a transmit–receive head coil and were acquired with a Fast Field
Echo sequence after injection of Gadolinium. The acquisition
Fig. 2. Coronal slices of a native image (left), a native image after denoising
parameters were as follows: TE/TR/Flip angle=4.6 ms/9.9 ms/8°,
acquired matrix size=256×256 mm, field of view (FOV)=256 mm,
voxel size=1×1×1 mm, volume=182 axial 1-mm thickness slices,
no SENSE factor, and acquisition time=6 min 59 s. The T1 template
was resampled (cubic B-Spline algorithm) to fit the Colin27
template (0.5 mm3 voxel volume size). We used a strategy close
to the one described by Sanchez Castro et al. (2006), which states
that the best registration of patient images to the atlas in the DBS
context was a global affine image to atlas registration, followed by a
nonlinear registration using a Demons algorithm along with
semiautomated segmentations of deep structures. The registration
procedure proposed here has been adapted to be fully automated
and not only to be close to the one proposed by Sanchez but also to
be very similar to the work of Chakravarty et al. (2008). The
following registration workflow was applied for each patient: affine
T1-MR-to-atlas registration was first computed. Then a local affine
registration was computed on a region of interest including the deep
brain structures. The final step included a nonlinear local registration
step using the Demons approach [www.itk.org] without preseg-
mentation step, which estimated a 3D deformation field between a
source volume and a target volume. A landmark-based validation
study was applied, similar to the intrasubject registration validation
and inhomogeneities correction (middle), and the T1 template (right).

http://www.itk.org


Fig. 3. Coronal, sagittal, and transversal slices of the T1 (above) and T1+T2 (below) templates.
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study. As we decided to limit this study to a DBS context, the
registration validation was based only on the five anatomical
landmarks in the bounding box (Fig. 1), which were manually
defined by a neurosurgeon on the 15 volumes and on the two
templates. The intrarater variability of landmark placement was also
computed. The 5 landmarks used in this study were placed three
times on five normal subjects. The intrarater variability was
measured from the distances between the multiple placements;
(dist (L1, L2) + dist (L1, L3) + dist (L2, L3)/3), in which L1–3 are
landmark location from the three trials.

Results

Construction of the templates

Volume averaging visually enhances the global quality of the
template (Fig. 2). Fig. 3 shows the homogenization of the signal and an
accurate visualization of GM and WM regions on the T1 template. On
the mixed T1–T2 template, the bounding box is visible but intensities
Fig. 4. Details of th
of the inverse-T2 globally match the T1 boundaries. This allows
visualization of deep brain structures with high resolution as well as a
better demarcation of GM/WM intensity crossings.

Fig. 4 shows the 7–T2 volumes average before contrast inversion
and the subsampling step. Deep brain structures are clearly visible in
the mixed T1–T2 template, e.g., the transversal slices on Fig. 5.

Effectiveness of the strategy

Intensity profile
Fig. 6 shows a visual improvement from the native image to the

template, as GM/WM intensity crossings are more significant in the
averaged image. Each GM/WM intensity region is defined in lower/
higher intensities, thereby increasing the differentiation between
them.We observed a reduction in noise, asWM areas seem to bemore
homogeneous.

Figs. 7a–e shows image quality criteria for each N-intermediate
average volume. Computations for Figs. 7a–c were based on a ground
truth: the 15-volume image.
e T2 template.



Fig. 5. Five transversal slices of the T1 (above) and T1+T2 template (below).
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For all criteria, the five first images (corresponding to acquisitions
of the first session) did not have a significant impact on the final result
and on the improvement of quality criteria. The profiles increased, but
very slowly. When the acquisition session changed, at the fifth
average, all criteria were suddenly raised, until the sixth or seventh
average. The comments from the first session could also be applied,
since from the fifth to tenth averages, it corresponded to the second
session. The images subjected to a bias correction were superior to
those without this preprocessing. In terms of acutance, this result was
valuable starting from the sixth average. For correlation, acutance,
Fig. 6. Intensity profiles of a coronal slice of the native image (left) and the T1 template
(right).
SNR and contrast, the profiles seemed to reach amaximum, whereas it
was not the case for mutual information. We found that an average
with images first denoised, and then corrected, had almost the same
profile as the average with images first corrected, and then denoised.
Moreover, in all criteria, profiles from nonpreprocessed images were
almost identical to those only denoised.

In Fig. 8, the averages based on acquisitions from different sessions
evolved more than the ones based on acquisitions from the same
session, which did not vary. In Fig. 9, the profile of randomized image
averages had a more linear increase than the ordered image averages,
without the sudden change at the fifth and tenth average.

Intrasubject registration
For all 15 T1 volumes, the global placement error was null; all five

anatomical landmarks perfectly matched their corresponding points
on the native target. The same results were found with the T2-
registered volumes.

Validation for clinical studies

We found a placement error of 1.58±0.33 mm for the registration
with the Colin27 template, 1.07±0.36mmwith a native 3-T image and
0.78±0.19 mmwith our template. ANOVA and a multiple comparison
testwere computed at a 5% significance level for the 15-patient study on
Fig. 10. Every group was found significantly different from each other.
The intrarater variability (Table 2) was 0.66±0.32 mm.

Discussion

In the current study, we constructed and validated MR mono-
subject brain templates. This kind of template could serve as a
teaching tool to visualize complex deep structures and as a spatial
reference for neurological studies. Different criteria were studied, first
in order to find the optimal strategy for building this template and
then to demonstrate the impact of using such high-quality image
templates in patient-to-template registration. Results demonstrated
the quality of the resulting template and its impact on accurate
registration.



Fig. 7. Quality criteria for all N-intermediate average volumes. (a) Correlation, (b) mutual information, (c) SNR, (d) acutance, (e) contrast.
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Influence of 3-T machine

It has recently been proven that signal-to-noise ratio is signifi-
cantly better at 3 T than at 1.5-T MR imaging (Hoenig et al., 2005;
Manka et al., 2005; Frayne et al., 2003; Schick, 2005; Yongbi et al.,
Fig. 8. Correlation between 5 volumes templates and the N-intermediate volumes for
two cases: with acquisitions from the same session and with acquisitions from different
sessions.
2002). Other authors (Nobauer-Huhmann et al., 2002, Scarabino et al.,
2003; Sasaki et al., 2003; Ross, 2004) have reported lower contrast
between GM and WM at 3 T, but it was subjective, as it was based on
visual assessment only. In Fushimi et al. (2007), differences of contrast
Fig. 9. Correlation between the final T1 template and the intermediate average of
randomized images and ordered images (taken from the date of acquisition).



Fig. 10. Global registration error on a 15-patient study, with a workflow using the
Colin27 template, a native 3-T image and our template. (a) ANOVA statistical box plot.
(b) Multicomparison test.
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between 1.5 and 3 T were quantitatively computed with the CNR and
best results were shown for the 3-T images.

Patient motion

As mentioned earlier, the ideal result would be an image without
noise, inhomogeneities, and partial volume effects, keeping in mind
that the major source of improvement is due to the SNR increase. As
already mentioned (Holmes et al., 1998), a small patient motion
between each acquisition seems to be essential to increase the quality
of the final template. It can be explained by the modification of the
magnetic fields and the noise inside the machine. Intrinsic machine
parameters do not significantly change between consecutive acquisi-
tions. That means that averaging these images is comparable to
averaging virtually identical images. Figs. 8 and 9 show that it is
essential to acquire scans from different sessions in order to decrease
the noise. To rapidly raise the quality of our template, starting from
the tenth acquisitions, we chose to wait a few days between each scan.
With this approach, we were assured that the subject did not have the
same physical location in the machine and that intrinsic machine
parameters had fluctuated. Moreover, it allows us to suggest that the
intense signal regions of the magnetic field could have moved
between acquisitions and that the global spatial energy could be
reformed after the average. As we can see in Fig. 7, for almost all
criteria, the global quality of the volumes does not significantly
increase from the 12th to 13th average. This allows us to suggest that
Table 2
Intrarater variability.

Max SD Mean

Landmark placement variability (mm) 1.88 0.32 0.66
the template had reached a limit corresponding to an optimal image
without noise and with a global contrast corresponding to the
threshold of 3-T machine performances.

Registration validation

With current imaging technologies, intrasubject rigid registration
appears to be very effective, especially when native acquisitions are
subject to a reliable preprocessing step. A good spatial definition of the
volumes in a common space is required to precisely compute the
average. The main drawback of this method is a deterioration of the
contrast with higher GM/WM intensity crossings. As we found no
registration error, the quality of the final template is not distorted by
inaccurate intrasubject registration.

Preprocessing influence

As already mentioned, the preprocessing workflow was divided
into two principal components: inhomogeneity correction (IC) and
noise correction using a nonlocal means (NLM) method. Without loss
of generality, we have chosen the reference image as the image
preprocessed by (NLM+IC).

In Figs. 7a–c, profiles that did not include a preprocessing step of IC
were always higher than those including this step. This can be
explained by the fact that the image histogram was significantly
changed by the IC and was therefore more influential on intensity
values than a simple NLM. This argument also explains why the two
profiles with NLM preprocessing alone and without preprocessing are
relatively similar in all figures. In Figs. 7d and e, profiles that did not
include a preprocessing step of IC were above those including this step
until the sixth acquisition. This is probably due to the dynamic spread
that decreases the contrast and the acutance, which is closely related
to the contrast definition.

The order of the two preprocessing steps is often related to the
application (Montillo et al., 2003) and can modify the results of the
image processing applied after these treatments. For Figs. 7a–e, the
profiles NLM+IC and IC+NLM are nearly identical. Only Fig. 7d shows
a significant difference between the two profiles, with IC+NLMhigher
than NLM+IC. These observations fit the previous assumption that
the preprocessing has to comply with the image processing. When
noise removal is applied first, the weak edges can be smoothed and
will not be recovered by inhomogeneity correction. For image
processing dedicated to segmentation, the IC is usually used before
denoising, which is often unnecessary to obtain good segmentation
(Pham and Prince, 1999). In our case, the order of the two operations
has no consequences. Indeed, acutance is the edge contrast of an
image and is therefore different from simple contrast and from the
three other criteria. IC may remove some anatomical information, but
we were not interested in recovering the exact bias field, just a
delineation of the tissue's gray level distribution (Mangin, 2000).

It is important to point out that all results found here are unique to
the set of preprocessing algorithms that we used, and that results
would obviously vary depending on the use of other commonly used
methods.

Usefulness of T1–T2 mixed template

Multi-subject MR templates have been shown to allow better
visual inspection of deep brain structures due to better contrast, since
averaging improved the signal-to-noise ratio (D’Haese et al., 2005;
Bardinet et al., 2008). Mono-subject MR templates further increase
contrast since there is no anatomical variability between scans. Our
T1–T2 mixed template further improves contrast of basal ganglia,
such as the subthalamic nucleus and the globus pallidus, which are
targets of DBS in patients with movement disorders. Our templates
would be useful in the preoperative workflow for improved DBS
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targeting (Stancanello et al., 2008; Dawant et al., 2007; Guo et al.,
2007), as well for postoperative assessment (Lalys et al., 2009). Such
high-resolution low-noise templates could also be used to evaluate
and improve atlas-based image processing methods, such as segmen-
tation (Scherrer et al., 2008; Pohl et al., 2006).

Results of the comparative patient-to-template image registration
study have also shown that the T1 template was a good reference for
registration methods. Finally, these templates could serve as a
teaching tool to visualize complex structures, which are barely visible
in current MR images.

Validation for clinical studies

Results of the patient-to-template registration comparison have
shown that our T1 template increases the accuracy of a patient-to-
template basal ganglia registration. A recent study of patients with
Parkinson's diseases (Rocha Vasconcellos et al., 2009) has proved that
no significant anatomical differences exist for these patients when
compared to a control group. However, limitations of this validation
study can be found in the usual limitations of such landmark-based
approaches. The main limitation is that such validations are very
susceptible to human factor. Landmark-based validation is also
difficult for neurosurgeons because of the homogeneous regions
within the brain. Reproducible landmarks are very hard to define,
which limits its applicability. One other uncertainty concerns the
spatial localization of anatomical landmarks, which is limited by the
image quality and resolution. In order not to bias the landmark-based
validation, we performed a resampling step on our T1 template to
achieve the same image resolutions for both templates. One additional
limitation is the number of experts and subjects used. Even if
significant differences between both templates were found in our
study, a larger one is required to completely validate the contribution
of our new template. Nevertheless, the improved accuracy found
when using our 3-T template compared to the 1.5T Colin27 one is in
large part explained by the better signal available with 3-T MR images
(see Fig. 10). In addition, we expect that registration is more accurate
when using same field MR images. Results of this patient-to-template
registration validation were unique to a specific registration work-
flow, and it would be interesting to try other warping techniques on
our new template. Original DICOM images aremade freely available to
experiment other approaches.

Conclusion

In this article,wehave reported on the construction of in vivo healthy
human neuroanatomy MR templates. Our objective was to optimize
spatial and intensity resolutions. The reduction of noise enhanced the
visibility of fine structures, as both contrast and SNR increased with the
number of volumes averaged. Such image quality is not available with
current imaging protocols. Small movements between scans turned out
to be a vital condition to enhance the quality of the final template. We
demonstrated that the two computed templates allow visualization of
spatially complex structures as well as increased contrast between GM
and WM. We also showed that they greatly improved the accuracy of
template-based registration. Both resulting templates are freely avail-
able online (http://www.vmip.org/mritemplate).
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