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Abstract
All fields of neuroscience that employ brain imaging need to communicate their results with reference
to anatomical regions. In particular, comparative morphometry and group analysis of functional and
physiological data require coregistration of brains to establish correspondences across brain
structures. It is well established that linear registration of one brain to another is inadequate for
aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one
another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain
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image registration ever conducted. Fourteen algorithms from laboratories around the world are
evaluated using 8 different error measures. More than 45,000 registrations between 80 manually
labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic
Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms
(“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All
of these registrations were preceded by linear registration between the same image pairs using FLIRT.
One of the most significant findings of this study is that the relative performances of the registration
methods under comparison appear to be little affected by the choice of subject population, labeling
protocol, and type of overlap measure. This is important because it suggests that the findings are
generalizable to new subject populations that are labeled or evaluated using different labeling
protocols. Furthermore, we ranked the 14 methods according to three completely independent
analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived
three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox
gave the best results according to overlap and distance measures, with ART and SyN delivering the
most consistently high accuracy across subjects and label sets. Updates will be published on the
http://www.mindboggle.info/papers/ website.

Introduction
Brain mapping – mapping the structures, physiology, functions, and connectivity of brains in
individuals and in different populations – is possible due to a diverse but often disconnected
array of brain imaging technologies and analysis methods. To make the best use of brain image
data, researchers have attempted for over 40 years to establish a common reference frame such
as a three-dimensional coordinate or labeling system to consistently and accurately
communicate the spatial relationships within the data (Talairach and Szikla, 1967; Talairach
and Tournoux, 1988; Drury et al., 1996; Fischl et al., 1999; Clouchoux et al., 2005). A common
reference frame helps us to:

1. communicate and compare data (across subjects, time, conditions, and image types)

2. classify data (by meaningful spatial positions or extent), and

3. find patterns in data (to infer structural or functional relationships).

These three benefits are contingent on one serious premise: positions and sizes in one brain
must correspond to positions and sizes in another brain to make comparisons.

This premise almost universally does not hold when brain image data are compared across
individuals. The noise that this introduces is often accepted by researchers who generally
assume that if they have found corresponding features across two brains, the intervening points
between those features correspond to one another as well. Brains are so variable in shape that
there simply may not exist a point-to-point correspondence across any two brains, or even in
the same brain over time.

Explicit manual labeling of brain regions is the preferred approach for establishing anatomical
correspondence, but it is too prohibitive in terms of time and resources, particularly in cases
where neuroanatomists are not available, in intraoperative or other time-sensitive scenarios,
and in high-throughput environments that need to process dozens to thousands of brain images.
1

Automatically determining anatomical correspondence is almost universally done by
registering brains to one another or to a template. There has been a proliferation of different
approaches to perform image registration that demands a comparison to guide choices
regarding algorithms, software implementation, setup and parameters, and data preprocessing
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options. To better enable individuals to make these choices, the Valmet software tool
(http://www.ia.unc.edu/public/valmet/) (Gerig et al., 2001) and the Non-rigid Image
Registration Evaluation Project (NIREP) (http://www.nirep.org) were developed. The
Windows-based Valmet was in 2001 the first publicly available software tool for measuring
(as well as visualizing) the differences between corresponding image segmentations, but has
received only one minor update since 2001 (in 2004). It uses several algorithms to compare
segmentations: overlap ratio, Hausdorff distance, surface distance, and probabilistic overlap.
The NIREP project “has been started to develop, establish, maintain, and endorse a
standardized set of relevant benchmarks and metrics for performance evaluation of nonrigid
image registration algorithms.” The initial phase of the project will include 16 manually labeled
brain images (32 labeled regions in 8 men and 8 women) and four evaluation metrics: 1. relative
overlap (equivalent to the “union overlap” defined in the Materials and methods section), 2.
variance of the registered intensity images for an image population, 3. inverse consistency error
between a forward and reverse transformation between two images, and 4. transitivity (how
well all the pairwise registrations of the image population satisfy the transitivity property).

In this study we set out to evaluate what we believe are the most important nonlinear
deformation algorithms that have been implemented in fully automated software programs and
applied to human brain image registration. We measure accuracy at the scale of gross
morphological structures (gyri, sulci, and subcortical regions) acquired by magnetic resonance
imaging (MRI). There have been two significant prior studies that compared more than three
nonlinear deformation algorithms for evaluating whole-brain registration.

The first was communicated in a series of publications by Hellier et al. (2001a, 2002, 2003);
they compared five different fully automated nonlinear brain image registration software
programs using the same set of quantitative measures. These included global measures
comparing 17 deformed MRI source images and one target image: average brain volume, gray
matter overlap, white matter overlap, and correlation of a measure of curvature, and local
measures of distance and shape between corresponding principal sulci. Our study includes a
version of each of the five methods and is different primarily because (1) all tests were
conducted by a single individual (the first author) who had not authored any of the software
packages, but received guidance from the principal architects of the respective algorithms, (2)
its focus is on manually labeled anatomical regions, and (3) each and every brain was used as
a source and as a target for registration rather than selecting a single target.

The second is a recent paper (Yassa and Stark, 2009) that compares nonlinear registration
methods applied to regions in the medial temporal lobe; six of the methods are fully automated
and two are semi-automated (requiring manual identification of landmarks). They apply these
methods either to manually labeled brain regions, to weighted masks for these regions, or to
the original unlabeled brains, as in our study. The four methods that they applied to unlabeled
brains (and evaluated on regions in the medial temporal lobe) are the Talairach piecewise linear
approach and three SPM programs (included in our study). Registering labeled regions
obviously requires that the regions be labeled; their ROI-AL approach ‘labels to register’ rather
than ‘registers to label’ or ‘registers without labels.’ They used two evaluation measures on
pairs of images (20 MRI volumes total): an overlap measure (equivalent to the “target overlap”
defined in the Materials and methods section) and a measure of blur in a group average of
coregistered images.

1To indicate the level of investment required to manually label brain anatomy, the Center for Morphometric Analysis (CMA) at the
Massachusetts General Hospital (MGH) expects at least one month of training to train new technicians to the point of acceptable inter-
rater reliability using their Cardviews (Caviness et al., 1996) labeling protocol and software; once trained, it takes hours to weeks to
manually label a single brain. For 12 of the brains used in this study, a trained assistant took two weeks to label each brain. At this rate,
performing a modest imaging study with 20 subjects and 20 controls would require 20 months devoted strictly to labeling. Manual labeling
also suffers from inconsistencies within and across human labelers (Caviness et al., 1996; Fiez et al., 2000; Towle et al., 2003).
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What sets our study apart from both of these prior studies is the unparalleled scale and
thoroughness of the endeavor:

• over 14 nonlinear algorithms

• each algorithm applied at least 2,168 times (over 45,000 registrations total)

• 80 manually labeled brain images

• 4 different whole-brain labeling protocols (56 to 128 labeled regions)

• 8 different evaluation measures

• 3 independent analysis methods.

This study evaluates 15 registration algorithms, one linear (FLIRT) and 14 nonlinear: AIR,
ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN,
and four different SPM5 algorithms (“SPM2-type” and regular Normalization, Unified
Segmentation, and the DARTEL Toolbox; DARTEL was also run in a pairwise manner and
all four SPM algorithms were run with and without removal of skulls from the images). The
linear algorithm was included as an initialization step to establish a baseline prior to applying
the nonlinear algorithms. Comparisons among the algorithms and their requirements are
presented in Table 1 and in the Appendix B, software commands are in Supplementary section
7, and brief descriptions are in Supplementary section 8. Many of them are in common use for
registering structural MRIs to each other or to templates for neuromorphometric research or
as an intermediary to compare functional or physiological data (Gholipour et al., 2007), but
some of them exist only as pre-release code made available by their respective authors for this
study. See the “Algorithms excluded from the study” section in the Discussion for algorithms
excluded from the study. Additional materials and updated information will be made publicly
available via the website http://www.mindboggle.info/papers/.

Materials and methods
In this section, we first briefly describe the acquisition and preparation of the brain image and
label data. Then we outline the preprocessing (brain extraction and formatting), linear
registration, and nonlinear registration stages applied to the data, our evaluation measures, and
our analysis methods. The first author performed these latter steps on an OSX system (Mac
Pro 2-Quad-Core (8-processor) Intel Xeon, 3 GHz, 6 GB RAM) with a 10.4 operating system,
except where noted (see Supplementary section 7). Custom Python (http://www.python.org)
and Matlab (http://www.mathworks.com) software programs performed the preprocessing
steps, called the different programs to process thousands of pairs of images, computed the
results for evaluation, and produced the visualizations in the Results section.

Data preparation: images, labels, brain extraction, and formatting
Image acquisition and manual labels—Brain image data (T1-weighted MRIs and
corresponding manual labels) for 80 normal subjects were acquired from four different sources
(see Fig. 1 and Table 2, and Caveats section in the Discussion regarding label reliability):

LPBA40: 40 brain images and their labels used to construct the LONI Probabilistic Brain Atlas
(LPBA40) at the Laboratory of Neuro Imaging (LONI) at UCLA (Shattuck et al., 2008) are
available online (http://www.loni.ucla.edu/Atlases/LPBA40). They were preprocessed
according to existing LONI protocols to produce skull-stripped brain volumes. These volumes
were aligned to the MNI305 atlas (Evans et al., 1993) using rigid-body transformation to correct
for head tilt and reduce bias in the manual labeling process. This produced a transform from
native space to labeling space and an associated inverse transform. In each of the 40 subjects,
56 structures were manually labeled according to custom protocols
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(http://www.loni.ucla.edu/Protocols/LPBA40) using BrainSuite software
(http://brainsuite.usc.edu/). Brain masks were constructed from the manual labels and projected
back to the native (labeling) space to produce brain-only MRI volumes. These volumes were
then corrected for non-uniformity using BrainSuite's Bias Field Corrector. Sulci were used as
boundaries; white matter voxels that occurred between the boundaries of sulci and their
surrounding gray matter were included in the structure. This is the only dataset where white
matter is included with gray-matter regions.

After all of the registrations were conducted, we found errors in two of the LPBA40 subjects,
particularly with the right putamen. We brought this to LONI's notice and it is being corrected
for future downloads. The impact of these errors on the present study appears to be negligible,
as may be seen in Figs. 7 and 13, where there appears to be little difference between the average
values for the left and right putamen.

IBSR18: 18 brain images acquired at different laboratories are available through the Internet
Brain Segmentation Repository (http://www.cma.mgh.harvard.edu/ibsr/) as IBSR v2.0. The
T1-weighted images have been rotated to be in Talairach alignment (Talairach and Tournoux,
1988) and have been processed by the CMA (Center for Morphometric Analysis,
Massachusetts General Hospital (MGH) in Boston) ‘autoseg’ bias field correction routines.
They were manually labeled with NVM software
(http://neuromorphometrics.org:8080/nvm/), resulting in 84 labeled regions.

CUMC12: 12 subjects were scanned at the Columbia University Medical Center on a 1.5 T
GE scanner. Images were resliced coronally to a slice thickness of 3 mm, rotated into cardinal
orientation, then segmented and manually labeled by one technician trained according to the
Cardviews labeling scheme (Caviness et al., 1996) created at the CMA, and implemented in
Cardviews software (http://www.cma.mgh.harvard.edu/manuals/parcellation/). The images
have 128 labeled regions.

MGH10: 10 subjects were scanned at the MGH/MIT/HMS Athinoula A. Martinos Center for
Biomedical Imaging using a 3 T Siemens scanner and standard head coil. The data were
inhomogeneity-corrected, affine-registered to the MNI152 template (Evans et al., 1992), and
segmented using SPM2 software (Friston et al., 1995). The images were manually labeled by
Tourville of Boston University using Ghosh's ASAP software (Nieto-Castanon et al., 2003);
the labeling protocol (Tourville and Guenther, 2003) is similar to Cardviews, and in the version
used for this study produces 74 labeled regions.

Brain extraction—To register the brains with each other, we extracted each brain from its
whole-head image by constructing a mask from the corresponding manually labeled image
(see Fig. 1). However, since white matter and cerebrospinal fluid were not fully labeled in all
of the images, they had to be filled to create solid masks. For this, the non-background image
in each sagittal slice was dilated by one pixel, any holes were filled, and then the image was
eroded by one pixel. This procedure was repeated sequentially on the resulting volume for the
coronal, horizontal, and again for the sagittal slices, and resulted in a volume containing the
filled brain mask. This manual label-based skull-stripping procedure was performed on each
MRI volume in the IBSR18, CUMC12, and MGH10 sets, but not for those in the LPBA40 set;
the LPBA40 images had already been similarly prepared, but dilated and eroded with a larger
and spherical structural element (neighborhood) (Shattuck et al., 2008). All four SPM
algorithms were also run on whole-head images.

File preparation—All image and label volumes were in right-handed orientation and were
converted to Analyze 7.5 (.img, .hdr) format (except for MINC format used by ANIMAL)
because it was the most common image format accepted by the different software programs,
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and the only format presently compatible with AIR, ART, JRD-fluid, and SICLE (see Appendix
B). This itself was a cause of difficulties, because the different software packages deal with
Analyze header information differently, in particular with respect to left–right flipping and
origin location. Because of this and because of discrepancies between brain and atlas origins
for some of the data sets, origin and orientation information was removed from each of the
image and label volumes using FSL's “fslorient -deleteorient” and “fslchfiletype” commands.
The NiFTI data format, accepted by most of the f/MRI software packages, obviates these
concerns and is recommended over the Analyze format (http://nifti.nimh.nih.gov/). Exceptions
to the above steps were made for SPM5's template-based algorithms (Normalization, Unified
Segmentation, and DARTEL Toolbox, but not “SPM2-type” Normalization): Analyze images
were flipped right-to-left to left-handed orientation, and header orientation discrepancies were
corrected using spm_get_space.m (other algorithms were unaffected after the fslorient
command above).

Some extra preparation had to be done to accommodate the recommendations for running the
individual software packages (see Appendix B), which included writing parameter files,
intensity correction, padding, smoothing, and reorientation (in the case of SPM). For example,
parameter files were required for ROMEO, IRTK, and for each registration pair when using
SICLE, and command-line parameters had to be reset to make some of the programs run in
less than an hour or so per registration. SICLE required considerable preparation: we wrote a
Python script to generate the input parameter files and create output directories, normalized
intensities in Matlab, and padded versions of all of the image volumes so that their dimensions
were divisible by 16 (e.g., 181 × 217 × 181 files were padded to 224 × 224 × 192).

Linear registration as initialization
We linearly registered 40 of the brain images to a template using FMRIB Software Library's
(FSL) FLIRT (with the following settings: 9-parameter, correlation ratio, trilinear
interpolation; see Fig. 1). The template was the “nonlinear MNI152,” the nonlinear average
template in MNI space used by FSL (MNI152_T1_1mm_brain: 181 × 217 × 181 voxels, 1 ×
1 × 1 mm/voxel). The remaining 40 images were from the LPBA40 set and had already been
registered to the MNI305 atlas.

We then rigidly registered each of the 80 brains in MNI space, Is, to each of the other brains
in its group, It, again using FLIRT (6-parameter, correlation ratio, trilinear interpolation). This
resulted in 2,168 linear transforms Xs→t and transformed images in MNI space Is→t (a straight
arrow denotes linear registration), with 2,088 of them representing non-identical source-target
pairs (402 +182 +122 +102 −80). These linearly transformed source images, or “linear source
images,” serve as the input to each of the algorithms under comparison.

We applied the above linear and rigid-body transforms (with nearest-neighbor interpolation)
to the corresponding manually labeled volumes Ls, resulting in the “linear source labels”
Ls→t below (and in Figs. 2 and 3).

Nonlinear registration
Each of the nonlinear registration algorithms in the study then registered each of the 2,168
linear source images Is→t to its corresponding target image It. We applied the resulting
nonlinear transformation X[s→t]⇝t (with nearest-neighbor interpolation) to the corresponding
linear source labels Ls→t, producing warped source labels L[s→t]⇝t (a curved arrow denotes
nonlinear registration). These labels are compared against the manual labels of the target, Lt,
for evaluating registration performance. See Figs. 2 and 3 for the context and Supplementary
section 7 for the software commands used for each algorithm. Note that some structures were
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removed during preprocessing prior to computing the transforms, such as the cerebellum in
the LPBA40 set, but were included when applying the transforms to the source labels.

Evaluation measures
We used volume and surface overlap, volume similarity, and distance measures to evaluate
how well individual anatomical regions as well as total brain volumes register to one another.
For this section and for Fig. 4, source S refers to a registered image to be compared with its
registration target T (in our case, the warped source labels L[s→t]⇝t and the target labels Lt).
These evaluation measures assume the manual label sets are correct, or “silver standards.”

Volume overlap—We used three overlap agreement measures and two overlap error
measures, each quantifying some fraction of source S and target T volumes where their labels
agree or disagree. For information on overlap measures, including cases for multiple and
fractional labels, see Crum et al. (2005). The first overlap agreement measure is the “target
overlap,” TO, the intersection between two similarly labeled regions r in S and T divided by
the volume of the region in T, where | | indicates volume computed as the number of voxels:

(1)

Target overlap is a measure of sensitivity. When summed over a set of multiple labeled regions,
we have the total overlap agreement measure for a given registration:

(2)

Our second overlap agreement measure is the “mean overlap,” MO, a special case of the Kappa
coefficient (Zijdenbos et al., 1994) sometimes called the Dice coefficient; it is the intersection
divided by the mean volume of the two regions, which may again be summed over multiple
regions:

(3)

Our third overlap agreement measure is the “union overlap,” UO, or Jaccard coefficient (Gee
et al., 1993; Jaccard, 1912), the intersection over the union:

(4)

UO can be converted to MO by the following (Heckemann et al., 2006):

(5)

To complement the above agreement measures, we also computed false negative (FN) and
false positive (FP) errors. For these errors we characterize the source as a tentative set of labels
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for the target, and again assume that the target's manual labels are correct. These error measures
can range from zero to one; a value of zero is achieved for perfect overlap.

A false negative error for a given region is the measure of how much of that region is incorrectly
labeled. It is computed as the volume of a target region outside the corresponding source region
divided by the volume of the target region. As before, it is computed in voxels and summed
over a set of multiple labeled regions each with index r:

(6)

where Tr\Sr indicates the set (theoretic complement) of elements in Tr but not in Sr.

A false positive error for a given region is the measure of how much of the volume outside that
region is incorrectly assigned that region's label. It is computed as the volume of a source region
outside the corresponding target region divided by the volume of the source region:

(7)

Surface overlap—We anticipated that imaging artifacts affecting cortical thickness could
bias our overlap measures, because (for the same cortical area) thicker regions will have
relatively higher volume overlap agreements than thinner regions due to lower surface-to-
volume ratios. We tried to reduce this bias by computing overlap agreement only on the target
surfaces of the brain images, not throughout the entire target volumes. Computing overlap
agreement on the surfaces should also decrease the impact of segmentation biases, when
manual labels extend into white matter, especially for the LPBA40 set, where white matter
between sulcal structures were also assigned the structures' labels.

We used Freesurfer software (http://surfer.nmr.mgh.harvard.edu/, version 1.41) to construct
cerebral cortical surfaces (Dale et al., 1999) for each of the original 80 full-head images, and
converted the Freesurfer-generated surfaces to each brain's native space with Freesurfer's
“mri_surf2vol” command. We then linearly registered each surface to MNI space using the
initial affine transform from the original brain image to the MNI template (“Linear registration
as initialization” section). Each resulting target surface was intersected with its corresponding
target label volume Lt and warped source label volume L[s→t]⇝t. We compared these target
surface labels with the warped source surface labels using the same overlap agreement and
error measures used for the volumes.

Volume similarity—The volume similarity coefficient, VS, is a measure of the similarity
between source and target volumes. Although this measure does not reflect registration
accuracy (source and target regions can be disjoint and still have equal volumes), it is a
conventional measure included for retrospective evaluation of prior studies. It is equal to the
differences between two volumes divided by their mean volume, here again summed over
multiple regions:

(8)
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Distance error—The above overlap and volume similarity measures do not explicitly
account for boundary discrepancies between corresponding source and target regions. So we
chose our final evaluation measure, DE, the average distance error. DE is equal to the minimum
distance, mindist, from each source region boundary point, SrBp, to the entire set of points
making up the target region boundary, TrB, averaged across P points:

(9)

We extracted an approximation of the boundary points for each region of each of the 40
LPBA40 brains by applying a cityblock distance transform2 in Matlab and retaining only those
voxels of neighboring regions that were within two voxels from the region. This resulted not
in a complete shell about a region, but only the portion of the shell abutting other labeled
regions. We repeated this procedure for each region of each of the warped LPBA40 source
labels generated by each registration algorithm. We chose to construct borders from the warped
labels rather than warp borders constructed from the original labels because we were concerned
about interpolation artifacts.

We applied the same distance function used to construct the borders to also compute DE
between source and target borders. We computed DE for each region as well as for the entire
set of label boundaries as a whole.

Analysis
Testing for significant differences in the performance of the registration methods is not trivial
because of non-independency of samples. For example, for the LPBA40 dataset, each of the
40 brain images was registered to the 39 others, resulting in 1,560 pairwise registrations. Each
of the brains is represented 39 times as the registration source and 39 times as the target.
Because each brain is reused multiple times, independence of observations cannot be assumed.
We determined that for most of the registration methods, there is a high correlation between
overlap results obtained for pairs that share one or more brains (see Supplementary section 6).

To get around this issue of non-independency of samples, we conducted two separate statistical
tests, a permutation test and a one-way ANOVA test, on a small independent sample, and
repeated these tests on multiple such samples. We also conducted an indifference-zone ranking
on the entire set of results, testing for practical rather than statistical significance (see below).
For each test, the underlying measure is target overlap averaged across all regions.

Permutation tests—We performed permutation tests to determine if the means of a small
set of independent overlap values obtained by each of the registration methods are the same,
after Menke and Martinez (2004) and according to the following permutation algorithm:

1. Select a subset of P independent brain pairs

2. Select a pair of methods (two vectors of P total overlap values)

3. Subtract the two vectors and compute the mean difference D

4. Select a subset of the elements from one of the vectors

5. Swap this subset across the two vectors

6. Subtract the resulting vectors; compute the mean difference Dp

2bwdist.m in the Image Processing toolbox uses the two-pass, sequential scanning algorithm (Rosenfeld and Pfaltz, 1966; Paglieroni,
1992).
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7. Repeat steps #4–6 N times

8. Count the number of times n where abs(Dp)≥abs(D)

9.
Compute the exact p-value: 

10. Repeat steps #1–9; compute the fraction of times where p≤0.05.

The subset of brain pairs was selected so that each brain was used only once, corresponding
to the “no dependence” condition in Supplementary section 6. There were 20, 9, 6, and 5
independent brain pairs for the LPBA40, IBSR18, CUMC12, and MGH10 datasets,
respectively, as well as 20, 9, 6, and 5 corresponding average target overlap values obtained
by each method.

The number of permutations N for each subset of brain pairs was either the exhaustive set of
all possible permutations (212=4,096 for CUMC12 and 210=1024 for MGH10) or 1,000
permutations (LPBA40 and IBSR18) to keep the duration of the tests under 24 h. The number
of p-values calculated was either 100,000 (CUMC12 and MGH10) or 10,000 (LPBA40 and
IBSR18).

One-way ANOVA—We also performed a standard one-way ANOVA to test if the means of
similar subsets of independent average target overlap values obtained by each of the registration
methods are the same. We then subjected these results to a multiple comparison test using
Bonferroni correction to determine which pairs of means are significantly different (disjoint
95% confidence intervals about the means, based on critical values from the t distribution).
We repeated these ANOVA and multiple comparison tests 20 times, each time randomly
selecting independent samples from each of the datasets. These tests are not expected to be as
accurate as the permutation tests because some of the overlap values have skew distributions
and because the p-values are not exact.

Indifference-zone ranking—Our third evaluation between methods tested practical
significance rather than statistical significance. For example, if a region is registered to another
region of equal volume and results in an offset of a single voxel, this is not considered a
significant misregistration, but offsets greater than this are considered significant. An
evaluation measure of registration accuracy for a given region within a given brain pair is
calculated for two different registration methods. If these two values are within delta of one
another (referred to as an “indifference zone” when ranking (Bechhofer, 1954), they are
considered equal. The delta must correspond to a practical difference in registration. If we
model a region as a cube, then a single-voxel offset along the normal to one of its faces would
mean the voxels on that face of the cube reside outside of its target — this is equal to one-sixth
of its surface. We therefore set delta to one-sixth of a target region's surface. For the IBSR18,
CUMC12, and MGH10 datasets, we assumed the surface to be that of a cube
(6×edge2−12×edge, where edge=the edge length of a cube with the volume of the target region,
in voxels). For the LPBA40 dataset, we set the surface to the number of voxels bordering
adjacent regions, extracted as in the “Distance error” section.

Our implementation of indifference-zone ranking compared the 15 different registration
methods to each other in the following manner. For each region in a given label set and for
each pair of registered brains we constructed a 15×15 matrix, where each row and each column
corresponded to a registration method. Each element of the matrix was assigned the value −1,
0, or 1, for the cases when the evaluation measure for the method corresponding to its row was
at least delta less than, within delta of, or at least delta greater than that of the method
corresponding to its column. Then we calculated the mean of these {−1,0,1} values across all
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registration pairs for each region to construct Figs. 7, 8, 9, and 10 (the latter three in
Supplementary section 3).

Results
Results for the initial run are in Supplementary section 1, for the trivial case, where each brain
was registered to itself, are in Supplementary section 2, volume similarity results are in
Supplementary section 4, and distance error results are in Supplementary section 5.

Overlap results
Whole-brain averages—After the initial run and changes described in Supplementary
section 1, out of 2,168 registrations per algorithm, the only cases where target overlap values
were less than 25% were SPM's DARTEL (79 cases; the majority were from one brain)
Normalize (15 cases), ANIMAL (2 cases), and ROMEO (1 case) for the LPBA40 set and
Diffeomorphic Demons (1 case) for the IBSR18 set.

The target, union, and mean overlap values for volumes as well as surfaces (and the inverse of
their false positive and false negative values), averaged over all regions, gave almost identical
results when corrected for baseline discrepancies. Distributions of target overlap values are
shown in Fig. 5. What is remarkable is that the relative performances of these methods appear
to be robust not just to type of overlap measure, but also to subject population and labeling
protocol, as evidenced by the similar pattern of performances of the methods across the label
sets. This is particularly the case across IBSR18, CUMC12, and MGH10 sets. The pattern is
more subtle in LPBA40 because that label set has fewer labeled regions that are larger and
extend into white matter, and therefore results in higher and more similar absolute overlap
values.

We ran all 2,168 registrations again on whole-head images (before skull-stripping) using SPM's
Normalize, Unified Segmentation, and DARTEL, and the results were comparable or better
with the skull-stripped images. The relative overlap performance of the SPM programs agrees
with Yassa and Stark (2009): DARTEL performs better than Unified Segmentation which
performs better than Normalize. Because the SPM DARTEL results were very similar for its
original and pairwise implementations, we have included only the pairwise results; this is a
fair comparison because the other methods do not include optimal average template
construction.

Region-based results—The pattern of region-based overlap values is almost
indistinguishable across the methods, discounting baseline differences (data not shown). In
Fig. 6 we present volume and surface target overlap data for individual regions in their
anatomical context (LPBA40 set). For the most part this figure suggests that the overlap values
are approximately the same for volume and surface measures, corroborating whole-brain
averages, but also exposes discrepancies at the level of regions (FLIRT and SICLE)3.

Most of the regions in the brain volume plots are hidden from view, so for a complete picture
at the scale of individual regions, Figs. 7, 8, 9, and 10 present relative performances of the
different methods for each region as color-coded tables for each of the four label sets (their
construction is described in the “Indifference-zone ranking” section under “Materials and
methods”; Figs. 8, 9, and 10 are in Supplementary section 3). If all of the methods had
performed equally well, the color tables would be a uniform color. However, some of the

3The worse surface overlaps of the cerebellum (for all the methods except ROMEO) are probably due to the fact that the cerebellum was
removed from the LPBA40 set prior to computing the registration transforms, but the transforms were applied to the full label set (including
the cerebellum).
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methods performed better than average, particularly against simple linear registration (FLIRT).
By visual inspection, we can see that ART, IRTK, SyN, and SPM's DARTEL have consistently
high accuracy for the IBSR18, CUMC12, and MGH10 label sets relative to the other methods,
and that in addition to ART, IRTK, and SyN, FNIRT and JRD-fluid also appear to have high
relative accuracy for the LPBA40 set. As expected, we observed for all of the methods higher
overlap values for larger sized regions, because of smaller surface-to-volume ratios (not
shown).

Rankings
We ranked the registration methods in three independent ways: permutation tests, confidence
intervals obtained from one-way ANOVA tests with Bonferroni correction, and indifference-
zone ranking.

Permutation, ANOVA, and indifference-zone rankings—Table 3 presents the top
three ranks of registration methods according to the percentage of permutation tests whose p-
values were less than or equal to 0.05, and Table 4 according to relative target overlap scores.
For both tables, members within ranks 1, 2, and 3 have means lying within one, two, and three
standard deviations of the highest mean, respectively. Only ART and SyN are in the top rank
for all four label sets and for all tests.

For the one-way ANOVA tests, rank 1 methods have means lying within the 95% confidence
interval of the best method and rank 2 methods have confidence intervals that overlap the
confidence interval of the best method. These rankings were in almost complete agreement
among the target, union, and mean overlap values (and distance errors for the LPBA40 set).
Because these results were very similar to the permutation test ranks, and because these tests
are expected to be less accurate than the permutation tests, they are not included.

Discussion
This study evaluates 15 registration algorithms (one linear, 14 nonlinear) based primarily on
overlap measures of manually labeled anatomical regions. The scale and thoroughness are
unprecedented (over 45,000 registrations, 80 manually labeled brain images representing 4
different labeling protocols, 8 different evaluation measures, and 3 independent analysis
methods). We hope that the method of evaluation as well as the results will be useful to the
neuroscience community. As they become available, additional materials and updated
information will be made publicly available via the website
http://www.mindboggle.info/papers/.

One of the most significant findings of this study is that the relative performances of the
registration methods under comparison appear to be little affected by the choice of subject
population, labeling protocol, and type of overlap measure. This is important because it
suggests that the findings are generalizable to new healthy subject populations that are labeled
or evaluated using different labeling protocols. Furthermore, we ranked the methods according
to three completely independent analyses and derived three almost identical top rankings.
However, in order to make recommendations, it is important to place these results in the context
of the wider range of software packages available and the caveats inherent in registration in
general and with respect to this study in particular, as we do below.

Although we were not able to see a pattern in the results that would allow us to rank algorithms
by deformation model, similarity measure, or regularization method, there is a modest
correlation between the number of degrees of freedom of the deformation and registration
accuracy (0.29, or 0.45 if one excludes Diffeomorphic Demons), and between the number of
degrees of freedom and year (0.55) (see Table 5). This finding corroborates Hellier's evaluation:
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“The global measures used show that the quality of the registration is directly related to the
transformation's degrees of freedom” (Hellier et al., 2003). The four algorithms whose mean
rank is less than two (SyN, ART, IRTK, and SPM's DARTEL Toolbox) all have millions of
degrees of freedom and all took at least 15 min per registration, and all but one (IRTK) were
created in the last three years. Of the remaining 10 algorithms, seven have fewer than a million
degrees of freedom, seven took less than 15 min, and six were created over three years ago.

Algorithms excluded from the study
We excluded semi-automated approaches that require even minimal manual intervention to
reduce bias. A significant example is the forerunner of modern nonlinear registration methods,
the original Talairach coordinate referencing system (Talairach and Szikla, 1967; Talairach
and Tournoux, 1988), a piece-wise linear registration method that requires the identification
of landmarks in a brain image. Although the Talairach system is well suited to labeling regions
proximal to these landmarks (Grachev et al., 1998), it does not deal adequately with nonlinear
morphological differences, especially when applied to the highly variable cortex (Grachev et
al., 1999; Mandl et al., 2000; Roland et al., 1997; Xiong et al., 2000). Other examples that
require landmarks include modern nonlinear algorithms such as Large Deformation
Diffeomorphic Metric Mapping (personal communication with Michael Miller) (Beg et al.,
2005) and Caret (http://brainmap.wustl.edu/, personal communication with David Van Essen
and Donna Dierker) (Essen et al., 2001).

We also excluded some of the primary software programs for automatically labeling cortical
anatomy: Freesurfer (http://surfer. nmr.mgh.harvard.edu/) (Fischl et al., 2002, 2004),
BrainVisa (http://brainvisa.info) (Cointepas et al., 2001), HAMMER
(https://www.rad.upenn.edu/sbia/software/index.html) (Shen and Davatzikos, 2002), and
Mindboggle (http://www.mindboggle.info) (Klein and Hirsch, 2005; Klein et al., 2005),
because their cortical labeling algorithms are tied to their own labeled brain atlas(es). We
considered this problematic for three reasons: (1) we wanted to evaluate brain registration
algorithms, not brain labeling algorithms or particular atlas-based approaches, (2) their atlas
labels are inconsistent with the protocols used to label the brains in this study which would
make evaluation difficult, and (3) creating new atlases for each of these requires considerable
knowledge of the software. Freesurfer and BrainVisa differ from all of the other methods
mentioned in this paper because they register surfaces rather than image volumes. Mindboggle
differs from the others because it is based on combinatoric feature-matching and uses multiple
independent atlases. And of the four, HAMMER is the only one that can transform an arbitrary
set of labels when registering a source brain to a target brain. However, because we were not
able to obtain reasonable results, we did not include it in the study. We also tested the PASHA
algorithm (Cachier et al., 2003) with and without intensity normalization but because we
obtained very inconsistent results across the datasets we decided not to include it in the study
either. We also excluded other programs that do not allow one to apply transforms to separate
image volumes.

Caveats
General caveats—There are numerous caveats that must be taken into account when
evaluating registration data. The very question of correspondence between brains that we raised
at the beginning of this paper is revisited at every stage: at the level of anatomy, image
acquisition, image processing, registration (including similarity measure, transformation
model, regularization method, etc.), evaluation measures, and analysis based on these
measures. We will focus here on the most fundamental level of correspondence, at the primary
level of anatomy, and on the effects of registration on anatomical correspondence.
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If we consider the scale of gross anatomy or patterns of functional activity or physiological
data, then we may seek correspondences at the level of topographical, functional, or
physiological boundaries without assuming one-to-one mapping of the points of the boundaries
or the points within these regions of interest. In other words, another way of approaching this
“correspondence problem,” and by extension the elusive common reference frame, is as a
partial mapping between brains, independent of naming or spatial conventions. The common
reference frame is used simply as a reference of comparison or evaluation, not as a rigid
framework for comprehensively annotating brain image data, as is often done.

If we cannot expect every brain to have a one-to-one mapping with every other brain, then if
possible we need to compare similar brains. This can easily lead to the confound where image
correspondence is mistaken for anatomic correspondence (Crum et al., 2003; Rogelj et al.,
2002). Choosing a representative brain with which to establish correspondences with a given
brain results in a Catch-22 where determining similarities itself entails determining
correspondences between the brains. A few approaches around this dilemma include the use
of an established average template or probabilistic atlas as an intermediary registration target
(as is standardly done with SPM), construction of such a template from the subject group that
includes the brain in question, and decision fusion strategies for combining multiple, tentative
brain registrations or labels for a given target brain (Kittler et al., 1998; Rohlfing et al., 2004;
Warfield et al., 2004; Klein et al., 2005). With all of these approaches, however, there still
remains the distinct possibility that a given brain is not adequately represented by the majority
of the set of brains to which it is being compared. Indeed, it is possible that substructures within
a brain are most similar to a minority (or even a single, or no instance) of the set of brains, and
would be overridden by the majority.

The evaluation measures and analysis methods used in this paper are predicated on the
assumption that, at the macroscopic scale of topographic anatomical regions, there are
correspondences across a majority of brains that can effectively guide registrations. It is very
important to stress that we cannot make inferences about the accuracy of registrations within
these macroscopic regions. Therefore our overlap evaluation measures not only ignore
misregistration within a labeled region but are insensitive to folding in the deformations, which
would impact studies such as deformation-based morphometry. More generally, our evaluation
measures rely on information which is not directly included in the images, which is good for
evaluating the registrations, but they do not inform us about the intrinsic properties of the spatial
transformations. Example measures of the intrinsic properties of spatial transformations
include inverse consistency error, transitivity error, and “mean harmonic energy” (where the
Jacobian determinant of the transformation is averaged over the volume).

Another general caveat comes from recent evidence that nonlinear registration to average
templates affects different brain regions in different ways that lead to relative distortions in
volume that are difficult to predict (Allen et al., 2008). The evidence was based on varying the
target template and registration method (AIR and piecewise linear). Although our study was
not concerned with absolute volumetry, and nonlinear registrations were conducted from one
brain to another without the use of a template, we share the caution raised by their study.

Specific caveats—Caveats that are specific to our study mirror the general caveats raised
above: anatomical and labeling variability of the subject brains, quality of their images, the
preprocessing steps the images were subjected to, the implementation of the registration
algorithms, and our evaluation and analysis methods. With regard to the first three caveats, we
made the assumption that each label set consists of a subject group of normal individuals whose
brain images were acquired, preprocessed, and labeled in a consistent manner. Some of the co-
authors have commented that the quality of the images in this study is worse than the quality
of the images that they are used to applying their algorithms to. Some of the reasons for this
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are that the images for these label sets were acquired years ago, are incomplete (for example,
only the CUMC12 set includes the cerebellum in registered images and labels), many are of
low contrast, and all of them were linearly transformed to a template space that involved two
trilinear interpolation steps (see below). All of the algorithms performed worst on the IBSR18
set, whose images were acquired from various sources and are of varying quality, flouting our
assumption above regarding consistency.

Each brain image was labeled only once. Because there are no intra- or inter-labeler data for
these images, we cannot know how accurately and consistently they were labeled, let alone
have an idea of the degree of confidence for any of the label boundaries. We can only estimate
based on labeling tests for two of the labeling protocols (Caviness et al., 1996; Shattuck et al.,
2008). We therefore had to treat these label sets as “silver standards” whose hard label
boundaries are considered correct.

Regarding pre-processing, the brain images of each label set were consistently preprocessed,
and each registration method that performed preprocessing steps did so in a consistent manner
across all images. However, these preprocessing steps may be suboptimal for particular
registration methods. For example, aside from SPM's algorithms, we did not test registration
accuracy for whole-head images. Although most of the co-authors indicated that they believe
their registration methods would perform better on properly skull-stripped images than on
whole-head images4, we are not aware of any published study that has made this comparison.
Likewise, we are aware of no comparisons between the registration of interpolated versus non-
interpolated (bias-field corrected and uncorrected, intensity normalized and non-normalized,
etc.) images. All of the images in this study were linearly interpolated twice, once to linearly
register each brain to a template, and a second time to linearly register each source brain to a
target brain in the template space, prior to nonlinear registration. We did this to be consistent,
because all of the registration methods we compared do not accept an affine transform to
initialize registration. The first author has observed much more accurate nonlinear registrations
with ART (on a separate set of brain images) when using nearest-neighbor (or no) interpolation
on a preliminary linear registration step, most noticeably in occipital–parietal boundaries. This
suggests that, at the very least, ART would perform much better than this study suggests. More
work will need to be conducted to see how consistent the improvements are and which
algorithms are affected most by interpolation.

Regarding the registration methods themselves, each one has a similarity measure,
transformation model, regularization method, and optimization strategy. Unfortunately, we
could only evaluate each algorithm in its entirety. A superior transformation model coupled
with an unsuitable similarity measure, for example, would most likely lead to suboptimal
results. By extension, a poor selection of parameter settings will lead to poor registrations. We
could only evaluate each algorithm using the software parameters that were recommended by
their authors. Perhaps the most crucial assumption of our study is that these parameter settings
for each method were appropriate for all of our brain images. We fully expect that each
registration algorithm could perform better given the opportunity to experiment with these
settings. This is one aspect of our study that sets it apart from comparison studies such as
Hellier's (Hellier et al., 2001a, 2002, 2003), where the authors of the software packages were
allowed to tweak and run their own programs on the full test set of brain images. The commands
that were run for this study were recommended by the authors of their respective software
programs after having seen only one or two of the 80 images from one of the four datasets
(FNIRT, IRTK, SICLE, SyN, and SPM's DARTEL Toolbox5),or no images at all.

4FNIRT is an exception: In the beta version used in this study, zero values are interpreted as missing data; FNIRT will not use the
information for the edge of the cortex in the registration with this setting, which may result in misregistration of the surface of the brain.
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When reslicing the source label volumes, we used nearest-neighbor interpolation to preserve
label values. An alternative approach is recommended where the source label volume is first
split into N binary volumes, with one label per volume (Collins, personal communication).
Each volume is then resampled using the nonlinear transformation with a tricubic or truncated
sync kernel instead of nearest-neighbor interpolation. The resulting N temporary volumes are
finally combined into a single volume, where each voxel label is set to the label of the structure
that has the highest value. This presumably gives more consistent behavior at structure edges,
especially in areas where the deformation changes local volumes or where more than three
structures meet. Others have implemented variants of this approach (Crum et al., 2004;
Shattuck et al., 2008). We were unable to follow this recommendation due to computational
and storage constraints, and were advised that the results would be only marginally different.

Recommendations
Bearing in mind the caveats mentioned above, particularly those regarding parameter settings,
the first author makes the following recommendations based on the results of this study. All
of the software packages under comparison are freely available via the Internet or from the
authors themselves (except for JRD-fluid, run on LONI's servers) and all but one (SICLE) are
easy to install. They vary in the extent of their documentation, primarily because the pre-release
software packages are new and very much under active development.

The highest-ranking registration methods were SyN, ART, IRTK, and SPM's DARTEL
Toolbox (see Tables 3, 4, and 5). SyN and ART gave consistently high-ranking results and
were the only methods that attained top rank for all tests and for all label sets. IRTK and SPM's
DARTEL were competitive with these two methods.

All four of these methods are available on Unix-type systems, and all but ART are available
for the Windows operating system. Of the four, only SPM requires a commercial software
package (Matlab) and has a graphical user interface (which was not used in the study). If
flexibility is desired, SyN provides the most options and the closest documentation to a manual
for command-line parameters. If resources are an issue, note that SyN requires at least 1 GB
RAM and 87 MB storage per x, y, z set of transform files (followed by ART at 67 MB for our
data). If time is a constraint, ART is the fastest of the four. If consistency is the top priority,
ART had the fewest outliers and among the tightest distributions of the four methods. If
interested in particular regions, please refer to Figs. 7, 8, 9, and 10 (the latter three are in
Supplementary section 3) to determine which of the 15 methods had the highest relative
accuracy for those regions across the label sets.

For time-sensitive scenarios, such as intraoperative imaging, and in high-throughput
environments that need to process dozens to thousands of brain images, Diffeomorphic
Demons and ROMEO are reasonable candidates.

With regard to the evaluation protocol, based on the experience of conducting this study the
first author recommends caution when choosing an image format and preprocessing steps,
particularly when comparing across methods, recommends avoiding interpolation prior to
running nonlinear registration, and recommends the model of Pierre Jannin et al. for defining
and reporting reference-based validation protocols (Jannin et al., 2006).

With regard to designing and distributing registration algorithms, the first author recommends
where possible creating separable components for the similarity measure, transformation

5Updated versions of these software packages were used after the authors of the packages saw an image or two, or their recommended
commands or parameter files were altered to set the number of iterations or control point spacing to reduce computation time, or the
authors needed to determine if intensity correction was warranted (see Supplementary section 1).
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model, regularization method, and optimization strategy. This would aid users and evaluators
who would want to alter or improve upon these individual components.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at doi:
10.1016/j.neuroimage.2008.12.037 (and on http://www.mindboggle.info/papers/).

Appendix B. Algorithm requirements

Algorithm Code Computer Input Setup Run time: min

FLIRT (FSL 4.0) C++ OSX, Linux, Win,… Analyze, NiFTI

AIR 5.25 C OSX, Unix, Win,…
ANSI C compiler

Analyze 8-/16-bit Remove nonbrain structures 6.7 (1.5)

ANIMAL (AutoReg 0.98 k) C, Perl OSX, Linux, Unix MINC Intensity correction (option) 11.2 (0.4)

ART C++ OSX, Linux Analyze 20.1 (1.6) [Linux]

Diffeomorphic Demons C++ Most (ITK compilable) Analyze, NiFTI,
DICOM,… (ITK)

ITK 8.7 (1.2)

FNIRT beta C++ OSX, Linux, Unix Analyze, NiFTI
(writes to Analyze)

29.1 (6.0)

IRTK C++ OSX, Linux, Win Analyze, NiFTI,
VTK, GIPL

Parameter file 120.8 (29.3)

JRD-fluid C++ Sun Analyze (run on LONI servers) 17.1 (1.0) [Solaris]

ROMEO C++ OSX, Linux, Win
900+MB RAM

Analyze, NiFTI,
DICOM,… (ITK)

Parameter file
Intensity correction (Hellier,
2003)

7.5 (0.5)

SICLE C++ OSX, Linux, Solaris,
Alpha, Win
g77/gfortran
lapack, f2c
1+GB RAM

Analyze (7.5) 8-bit Dimensions divisible by 16
Intensity correction
Isotropic
Individual parameter files

33.5 (6.6)

SyN beta C++ Most (ITK compilable)
1+GB RAM

Analyze, NiFTI,
DICOM,… (ITK)

ITK (3.10) 77 (15.1)
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Algorithm Code Computer Input Setup Run time: min

SPM5: Matlab Most (Matlab)

“SPM2-type” Normalization Matlab 6.5 onwards Analyze, NiFTI Smooth targets (Gaussian 8
mm FWHM)

<1

Normalization Matlab 6.5 onwards Analyze, NiFTI Left-handed orientation <1

Unified Segmentation Matlab 6.5 onwards Analyze, NiFTI Left-handed orientation ≃ 1

DARTEL Toolbox (pairs) Matlab 7.0 onwards Analyze, NiFTI Left-handed orientation
Origin near anterior
commissure

71.8 (6.3)*

The run time average (and standard deviation) is estimated from a sample of registrations and includes the time to compute the source-to-target transform
but not to apply it to resample the source labels.
*
SPM's DARTEL Toolbox requires time to construct a template per subject group. The time listed is for the pairwise implementation; for the normal

toolbox implementation, it took 17 min per brain, or 17.5 h to run all 80 brains (LPBA40: 480 min., IBSR18: 220 min., CUMC12: 195 min., MGH10:
158 min.). All programs were run on an OSX system (Mac Pro Quad-Core Intel Xeon, 3 GHz, 6GB RAM) witha 10.4 operating system, except for ROMEO
(10.5 operating system), ART (the OSX versionwas made available after the study; Dell PowerEdge 6600 Enterprise server with four 2.8 GHz Intel Xeon
processors and 28 GB of RAM running Redhat linux, approximately 1.25–1.5 times slower than the OSX machine), and JRD-fluid (run on LONI's servers:
SUN Microsystem workstations with a dual 64-bit AMD Opteron 2.4 GHz processor running Solaris).
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Fig. 1.
Brain image data. The study used four different image datasets with a total of 80 brains. The
datasets contain different numbers of subjects (n) and different numbers of labeled anatomical
regions (r) derived from different labeling protocols: LPBA40 (LONI Probabilistic Brain Atlas:
n=40, r=56), IBSR18 (Internet Brain Segmentation Repository: n=18, r=84), CUMC12
(Columbia University Medical Center: n=12, r=128), and MGH10 (Massachusetts General
Hospital: n=10, r=74). A sample brain from each dataset is shown. For each brain, there are
three columns (left to right): original T1-weighted MRI, extracted brain registered to nonlinear
MNI152 space, and manual labels registered to nonlinear MNI152 space (used to extract the
brain). Within each column the three rows (top to bottom) correspond to sagittal (front facing
right), horizontal (front facing top, right on right side), and coronal (right on right side) views.
The LPBA40 brains had already been extracted and registered to MNI (MNI305 vs. MNI152)
space (Shattuck et al., 2008). The scale, position, and contrast of the MR images have been
altered for the figure. The colors for the manual labels do not correspond across datasets. (In
the Discussion the reader is referred to the web version of this article.)
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Fig. 2.
Registration equations. The three stages of the study were to compute, apply, and evaluate
registration transforms. To compute the transforms, we linearly registered each source image
Is to a target image It (both already in MNI space), resulting in a “linear source image” Is→t as
well as a linear transform Xs→t (a straight arrow denotes linear registration). Each nonlinear
algorithm Ai then registered (warped) the linear source image to the same target image,
generating a second, nonlinear transform X[s→t]⇝t (a curved arrow denotes nonlinear
registration). We applied the linear transform to the source labels Ls to give the corresponding
“linear source labels” Ls→t, and applied the nonlinear transform to Ls→t to produce the final
warped source labels L[s→t]. Finally, we compared these labels to the manual labels for the
target, Lt, using a set of evaluation measures Eq.
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Fig. 3.
Overview. This diagram provides an overview of the study for a single nonlinear registration
algorithm, placing example preprocessed data from Fig. 1 into the equations of Fig. 2. The
three stages include linear registration, nonlinear registration, and evaluation (left to right).
The four different datasets (LBPA40, IBSR18, CUMC12, and MGH10) are aligned along the
left in four different versions: images, surfaces derived from the images, labels, and borders
derived from the labels. A source and target are drawn from each version (image volumes are
shown as coronal slices for clarity). A source image Is is linearly then nonlinearly registered
to a target image It. The linear and nonlinear transforms (Xs→t and X[s→t]⇝t) are applied to the
corresponding source labels Ls. The resulting nonlinearly transformed labels L[s→t]⇝t are
compared against the target labels Lt. This comparison is used to calculate volume overlap and
volume similarity per region. The target surface St is intersected with the target labels Lt and
warped source labels L[s→t]⇝t to calculate surface overlap. Borders between each labeled
region and all adjacent labeled regions are constructed from Lt and L[s→t]⇝t, and average
distances between the resulting borders Bt and B[s→t]⇝t are calculated per region.
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Fig. 4.
Overlap. This study uses volume and surface overlap, volume similarity, and distance measures
to evaluate the accuracy of registrations. The equations for the three overlap measures: target
overlap, mean overlap, and union overlap use the terms in this schematic Venn diagram of two
partially overlapping objects, a source S and a target T. Their intersection is denoted by S∩T
and their union by S∪T. S|T indicates the set (theoretic complement) of elements in S but not
in T.
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Fig. 5.
Overlap by registration method. These box and whisker plots show the target overlap measures
between deformed source and target label volumes averaged first across all of the regions in
each label set (LPBA40, IBSR18, CUMC12, and MGH10) then across brain pairs. Each box
represents values obtained by a registration method and has lines at the lower quartile, median,
and upper quartile values; whiskers extend from each end of the box to the most extreme values
within 1.5 times the interquartile range from the box. Outliers (+) have values beyond the ends
of the whiskers. Target, union and mean overlap measures for volumes and surfaces (and the
inverse of their false positive and false negative values) all produced results that are almost
identical if corrected for baseline discrepancies. Similarities between relative performances of
the different registration methods can even be seen here across the label sets.
(SPM_N*=“SPM2-type” normalization, SPM_N=SPM's Normalize, SPM_US=Unified
Segmentation, SPM_D=DARTEL pairwise).
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Fig. 6.
Volume and surface overlap by registration method: LPBA40 regions. These brain images
show the mean target overlap calculated across all 1,560 brain pairs for the (A) volume and
(B) surface of each LPBA40 region, and depicts that mean as a color (blue indicates higher
accuracy). The values for each registration method are projected on one of the LPBA40 brains,
seen from the left, looking down from 30°, with the frontal pole facing left. (SPM_N*=“SPM2-
type” Normalize, SPM_N=Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL
pairwise).
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Fig. 7.
Indifference-zone ranking of the registration methods: LPBA40 overlaps. This matrix uses a
color scale that reflects the relative performance of the registration methods (with blue
indicating higher accuracy). Each colored rectangle represents the average score for a given
method for a given region, averaged over 1,560 LPBA40 registrations. The scores are {−1,0,1}
values indicating the pairwise performance of the method relative to each of the other methods
(see text), according to target volume overlap (union and mean overlap results are almost
identical). The colors (and color range) are not comparable to those of the other label sets (Figs.
8, 9, and 10 in Supplementary section 3). (SPM_N*=“SPM2-type” Normalize,
SPM_N=Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL pairwise).
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Table 1
Deformation model, approximate number of degrees of freedom (dof), similarity measure, and regularization method
for each of the algorithms evaluated in this study

Algorithm Deformation ≃dof Similarity Regularization

FLIRT Linear, rigid-body 9, 6 normalized CR

AIR 5th-order polynomial warps 168 MSD (optional intensity
scaling)

Incremental increase of
polynomial order;
MRes: sparse-to-fine voxel
sampling

ANIMAL Local translations 69K CC MRes, local Gaussian
smoothing;
stiffness parameter weights
mean deformation
vector at each node

ART Non-parametric, homeomorphic 7 M normalized CC MRes median and low-pass
Gaussian filtering

Diffeomorphic Demons Non-parametric, diffeomorphic
displacement field

21 M SSD MRes: Gaussian smoothing

FNIRT Cubic B-splines 30 K SSD Membrane energy*;
number of basis
components; MRes: down-
to
up-sampling

IRTK Cubic B-splines 1.4 M normalized MI None used in the study;
MRes: control mesh
spacing and Gaussian
smoothing

JRD-fluid Viscous fluid: variational
calculus
(diffeomorphic)

2 M Jensen–Rényi divergence Compressible viscous fluid
governed by the
Navier–Stokes equation for
conservation of
momentum; MRes

ROMEO Local affine (12 dof) 2 M Displaced frame difference First-order explicit
regularization method,
brightness
constancy constraint;
MRes: adaptive multigrid
(octree subdivision),
Gaussian smoothing

SICLE 3-D Fourier series
(diffeomorphic)

8 K SSD Small-deformation linear
elasticity, inverse
consistency; MRes: number
of basis components

SyN Bi-directional diffeomorphism 28 M CC MRes Gaussian smoothing
of the velocity field;
transformation symmetry

SPM5:

     “SPM2-type” Discrete cosine transforms 1 K MSD Bending energy, basis
cutoff

          Normalization

     Normalization Discrete cosine transforms 1 K MSD Bending energy, basis
cutoff

     Unified Segmentation Discrete cosine transforms 1 K Generative segmentation
model

Bending energy, basis
cutoff

     DARTEL Toolbox Finite difference model of a
velocity
field (constant over time,
diffeomorphic)

6.4 M Multinomial model
(“congealing”)

Linear-elasticity; MRes:
full-multigrid (recursive)
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The dof is estimated based on the parameters and data used in the study; approximate equations, where available, are given in each algorithm's description
in the Supplementary section 8. Software requirements, input, and run time for the algorithms are in the Appendix B.

*
Since this study was conducted, FNIRT uses bending energy as its default regularization method. MRes=multiresolution; MSD=mean squared difference;

SSD=sum of squared differences; CC=cross-correlation; CR=correlation ratio; MI=mutual information.
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Table 5
Mean rank, degrees of freedom (dof), average run time, and year of publication for each algorithm

Algorithm Mean rank dof Run time: min Year

SyN 1.00 28 M 77 (15.1) 2008

ART 1.00 7 M 20.1 (1.6) [Linux] 2005

IRTK 1.63 1.4 M 120.8 (29.3) 1999

SPM5 DARTEL Toolbox 1.88 6.4 M 71.8 (6.3) 2007

JRD-fluid 2.50 2 M 17.1 (1.0) [Solaris] 2007

Diffeomorphic Demons 3.00 21 M 8.7 (1.2) 2007

FNIRT 3.00 30 K 29.1 (6.0) 2008

ROMEO 3.50 2 M 7.5 (0.5) 2001

ANIMAL 69 K 11.2 (0.4) 1994

SICLE 8 K 33.5 (6.6) 1999

SPM5 Unified Segmentation 1 K ≃ 1 2005

“SPM2-type” Normalize 1 K ≃ 1 1999

SPM5 Normalize 1 K ≃ 1 1999

AIR 168 6.7 (1.5) 1998

The 14 nonlinear deformation algorithms are orderedby mean rank (best at top), which was computed for each algorithmbyaveraging the target overlap
ranks in Tables 3 and 4 (assigned by the permutation tests and indifference-zone rankings). The six algorithms at the bottom are of equal rank (4) since
they were not in the top three ranks. For details on architecture and run time, see Appendix B. Except for FNIRT and Diffeomorphic Demons, the dof and
mean rank sequences roughly match.
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