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A review of geometric transformations for nonrigid
body registration

Mark Holden

Abstract— This paper provides a comprehensive and quantita-
tive review of spatial transformations models for nonrigid image
registration. It explains the theoretical foundation of the models
and classifies them according to this basis. This results in two cat-
egories, physically based models described by partial differential
equations of continuum mechanics (e.g. linear elasticity and fluid
flow) and basis function expansions derived from interpolation
and approximation theory (e.g. radial basis functions, B-splines
and wavelets). Recent work on constraining the transformation so
that it preserves the topology or is diffeomorphic is also described.
The final section reviews some recent evaluation studies. The
paper concludes by explaining under what conditions a particular
transformation model is appropriate.

Index Terms— spatial transformations, nonrigid image regis-
tration, linear elastic registration, fluid flow registrati on, para-
metric transformation models, wavelet based registration, spline
based registration.

Mathematical notation

A(x) target image,x ∈ Ω is an image location.
B(x) source image to be aligned withA(x).
Dij the rate of deformation tensor.
εij strain tensor.
η mass source term.
f(x) body force per unit volume acting atx.
i, j Cartesian components.
I identity matrix.
< f(x), g(x) > inner product of functionsf(x) andg(x), i.e.
∫

f̄(x)g(x)dx wheref̄(x) is the complex conjugate off(x).
λ, µ Lamé constants describing the mechanical properties of
an elastic material.
λf , µf viscosity coefficients of a viscous fluid.
∇ vector differential operator:̂i ∂

∂x
+ ĵ ∂

∂y
+ k̂ ∂

∂z
for R

3.
Ω domain of the image.
pi, qi ith landmark locations in the source and target images
respectively.
ρ fluid density.
σij Cauchy stress tensor.
T spatial transformation, refers to the mapping from the space
of the source image to the space of the target.
⊕ direct sum.
u(x) displacement vector of pointx in the space of the source
image.
v(x) velocity vector.
Vij vorticity tensor.
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Definitions

Capture range The range of attraction of the registration
function. The spatial extent of the set of misregistrationsfrom
which convergence to the optimal transformation is possible.
CSF cerebrospinal fluid.
Diffeomorphism A differentiable homeomorphism with a
differentiable inverse (non-zero determinant of the Jacobian
matrix). It is a homeomorphism that maps one differentiable
manifold to another.
Eulerian coordinatesThese describe the motion of a body of
particles relative to a set of fixed points in spacex through
which particles pass. The Eulerian coordinate frame refersto
the current state of the system.
Homeomorphism A continuous bijective mapping with a
continuous inverse. Intuitively this is achieved by stretching,
bending or compressing an elastic material without any cut-
ting.
Lagrangian coordinates These describe the motion of a
body of particles relative to its initial configuration. Given the
position of a particleX at timet = 0, its positionx at timet
is given by a mapping from the initial to current configuration,
i.e.x = u(X, t)+X whereu(X, t) is the displacement vector.
Since deformations are assumed to be homeomorphisms there
exists a unique mappingX = x − u(x, t) of the current
location x of a particle to its original oneX at t = 0.
Lagrangian coordinates are also referred to as material or
referential coordinates.
Positive definite function A function f : R 7→ C is positive
definite if the associated matrixA with elementsaij =
f(xi − xj) is positive semi-definite∀xi, xj ∈ R. A matrix
A is positive semi-definite ifz∗Az ≥ 0 for all vectorsz ∈ C.
Support of a function Let f(x) be a real-valued function on
some setX . The support off is the smallest closed subset
Y ⊆ X outside of whichf is zero, i.e.f(x) = 0 ∀x ∈ X∩ Ȳ .
A function is said to have compact support if its support region
is a compact subset ofX and global support ifY = X .
EBS Elastic body spline. The solution of the Navier-Cauchy
PDE of linear elasticity.
FFD Free-form deformation.
GEBS Gaussian elastic body spline.
GM Grey matter.
MQ A multiquadric is a type of radial basis function of form√
r2 + c2.

MRA Multi-resolution analysis.
OF Optical flow based transformation.
PA Piecewise affine transformation.
PDE Partial differential equation.
ROI Region of interest.
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TPS Thin-plate spline.
VS Volume spline.
WM White matter.
WMN weighted mean radial basis function.

I. I NTRODUCTION

Image registration is the process of determining the cor-
respondence between objects in two images, by convention
between the source and the target image. To determine corre-
spondences it is necessary to find the geometrical or spatial
mapping (or spatial transformation) applied to the source
image so that it aligns with the target. The mapping is from the
image domainΩ to a subset or a superset ofΩ. For medical
imaging, the mapping is usually 3-D to 3-D. Transformations
that preserve the distance between all points in the image are
referred to as rigid-body transformations. They are equivalent
to a change from one Cartesian system of coordinates to an-
other one which differs by shift and rotation. Transformations
that allow for a global change of scale and shear are referredto
as affine transformations. Affine transformations map parallel
lines to parallel lines. Affine and rigid-body transformations
can be conveniently represented using homogeneous matrices,
these are4 × 4 matrices for 3-D to 3-D mappings.

In contrast, nonrigid transformations map straight lines to
curves. Nonrigid registration is the process of determining
such transformations given two images of an object. In certain
situations the deformation model is known, e.g. the geomet-
rical distortion of the imaging system, but in most cases it
is unknown. There are many different nonrigid transformation
models. In general, they can be divided into two categories:
physical based models and function representations. The
physical models in general, are derived from the theory of
continuum mechanics and can be divided into two main sub-
categories: elasticity and fluid flow. Function representations
originate from interpolation and approximation theory. They
use basis function expansions to model the deformation. There
are many different types of basis functions, e.g. radial basis
functions, B-splines and wavelets.

There are a few reviews of rigid-body registration methods
[1], [2], [3] and a few that consider nonrigid transformations
[4], [5], [6], [7], [8]. Also there are reviews of related image
warping methods [9]. Lester et al. [4] reviewed a number of
transformation models, including linear elasticity, fluidflow,
function expansions and splines. They focussed on hierarchical
strategies which can be applied to both the transformation and
data. Rohr [5] focussed on landmark based methods, particu-
larly the TPS model and extensions to it. Zitova and Flusser [6]
provided a general review of image registration which includes
a section on transformation models. Their review describes
radial basis functions, elastic and fluid models. Modersitzki [7]
concentrated on numerical solutions to registration problems,
including nonrigid ones. This included elastic and fluid models
and also radial basis functions. Goshtasby [8, ch 5] focussed
on radial basis functions and compared them to piecewise
affine models. None of these provide a comprehensive review
of commonly used transformations such as B-splines and
wavelets and few of them explain the underlying physical

models or discuss the comparative evaluation of transformation
models. This paper provides a comprehensive quantitative
review including an explanation of theoretical basis of the
models. It compares models and describes their limitations.

This paper is organised by grouping transformations accord-
ing to their theoretical basis. This results in two main cate-
gories: those that originate from physical models of materials
and those that originate from interpolation and approximation
theory. In addition to this, there are methods that constrain
the transformation according to some desirable mathematical
property. Accordingly the paper is organised with the follow-
ing structure:

• Physical models
– linear elasticity
– viscous fluid flow
– optical flow

• Basis function expansions
– radial basis functions
– B-splines
– wavelets

• Constraints on the transformation
– inverse consistency
– topology preservation
– diffeomorphic transformations

The final section describes recent comparative evaluation stud-
ies of some of these models. In order to make the paper more
self-contained and provide motivation a brief descriptionof
registration metrics and applications of nonrigid registration
follows on from the introduction.

Registration metrics

A registration metric takes two images as input and returns
a real value that indicates how well the images are aligned.
One of the simplest ones is based on the distance between
corresponding pairs of landmarks that are extracted from
images. The landmarks can be anatomical features or fiducial
markers that are rigidly attached to bone. For rigid-body
registration the theory is well developed [1], [2], [10], [11],
[12]. For nonrigid registration, landmarks are often used with
thin-plate splines, see section V-D. An advantage of landmarks
is that they enable the transformation to be determined in
closed form. Disadvantages are that a large number of them
are needed to densely sample the deformation field and also
the localisation process introduces error. Another possibility is
to use the distance between corresponding segmented surfaces.
But this provides a registration metric only at the surfacesand
not throughout the image volume as is often required, also
the segmentation process introduces error. A more modern
approach is to use an image similarity measure which gives
a quantitative measure of image alignment. For intra-modality
registration, the sum of square difference or cross correlation
of the corresponding voxel intensities can be used. For inter-
modality registration measures based on information theory
such as mutual information perform well in the rigid case,
see [3]. These measures have the advantage of providing fully
automatic algorithms and are suitable for determining dense
deformation fields.
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II. A PPLICATIONS OF NONRIGID REGISTRATION

In general, application domains are: medical imaging, re-
mote sensing, and industrial imaging [8]. Crum et al. [13]
survey a variety of medical applications. Essentially, there are
two categories: intra-subject and inter-subject. Intra-subject
registration refers to the registration of scans of the same
subject at different times, while inter-subject refers to the
registration of scans of different subjects, usually with the
same imaging modality. A non-exhaustive list of the main
applications is given below:

• Motion correction: To correct for the deformation of a
patient’s anatomy over time. For example, to correct for
motion between pre-operative, intra-operative and post-
operative scans in neurosurgery. For instance to correct
for brain-shift [14], [15] and facilitate navigation. These
deformations are mostly physical in nature and are caused
by: changes in the direction of gravity, changes in fluid
pressure, physiological motion associated with the heart,
respiration, peristalsis or other muscle groups.

• Motion determination: To quantify the physiological mo-
tion of the organ, e.g. heart [16], [17], lungs [18], [19]
or joints [20] and use the measurements for diagnosis or
therapy monitoring.

• Cross modality image fusion: To combine information
from multiple scans of the same patient with different
imaging modalities e.g. X-ray-MR [21], PET-CT [22],
[23]. This is analogous to the rigid-body case except that
the tissue is deformable, the deformations involved are
similar to motion correction.

• Change detection: To detect and measure structural
change over time. For instance for monitoring disease
processes (e.g. longitudinal studies) to aid either di-
agnosis or therapy. Typically measures of volume and
shape are used that are derived from the transformations.
Examples include multiple sclerosis [24], rheumatoid
arthritis [25], Alzheimer’s disease [26], [27], hormone
therapy [28] and morphological changes resulting from
surgical intervention [29].

• Distortion correction: To measure and correct for ge-
ometrical distortion of the imaging system. Possible
approaches are to register to scans of other imaging
modalities that exhibit less distortion [30], [31] or to use
phantoms [32].

• Atlas construction: To produce a representation of the av-
erage or variation in anatomy for a patient group. Atlases
can be either probabilistic [33], [34], [35], intensity based
[36], label based [37], [38] or deformation based [39].

• Atlas registration: This allows information from a group
of subjects to be combined and analysed in the standard
space of the atlas, cf. Talairach space [40].

• Segmentation: Given an image containing a set of de-
lineated structures this can be registered to the sub-
ject images and the transformations used to propagate
the delineations into the space of the subject images
so providing a segmentation [41], [42], [43]. Accurate
segmentations of tissue can be obtained from optical
images of histologically stained tissue samples. These

segmentations can be mapped into anatomical images like
MR [44], [45].

III. L INEAR ELASTIC TRANSFORMATIONS

A. Theory

The theory of linear elasticity is based on notions of stress
and strain. The stress at a given location is the contact force
per unit area acting on orthogonal planes that intersect the
location. Stress can be analysed mathematically using the
Cauchy stress tensor. This a second rank tensor denoted by
σij , the subscriptsi andj denote the three Cartesian directions
(x,y andz). Stress components are either normal to the plane
σii or within it σij , i 6= j. This tensor has nine components
and can be represented as a3× 3 matrix. Strain is a measure
of the amount of deformation. It is treated in an analogous
way to stress as a second rank tensorεij with normalεii and
shearεij , i 6= j components.

When a body is subject to an external force this induces
internal forces within the body which cause it to deform.
The internal forces are grouped into body and surface forces.
Body forces are distributed throughout the volume and are
specified as force per unit volume. When a linear elastic
material is in an equilibrium state the body forcesf balance
with the surface stressesσij . So the integral of the surface
(stress) forces and body forces must be zero. Assuming that the
stress components vary linearly across an infinitesimal element
it is possible to determine the following set of equilibrium
equations [46, page 20]:

∂σxx

∂x
+
∂σxy

∂y
+
∂σzx

∂z
+ fx = 0 (x, y, z) (1)

where (x, y, z) indicates that the other two equations are
obtainable through cyclic permutation ofx, y and z. By
applying Gauss’s divergence theorem to the force integral
it can be shown that the stress tensorσij is symmetric,
this reduces the number of independent stress components
to six (σxx, σyy, σzz , σxy, σyz, σzx). The normal and shear
infinitesimal strain can then be expressed in terms of the spatial
derivative of the displacement, as follows:

εxx =
∂u

∂x

εxy =
1

2
[
∂u

∂y
+
∂v

∂x
] (x, y, z;u, v, w) (2)

The constitutive equations for elasticity relate stress and
strain tensors see [47], [46]. This relationship is expressed in
the generalised Hooke’s lawσij = Cijkmεkm. The quantity
Cijkm is a fourth rank tensor referred to as the stiffness
tensor. Since there are six independent components for both
the stress and strain tensors the tensor of elastic constants
Cijkm has 36 distinct elastic constants. For an homogeneous
isotropic material there are an infinite number of planes of
symmetry. Hence, the constitutive equations are independent
of the coordinate system. By considering rotational invariance
it is possible to reduce the number of independent constants
to just two [46]. These are the Lamé constants,λ andµ. µ is
also referred to as the shear modulus. Thus for an isotropic
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material the stress-strain relation simplifies to the following
Piola-Kirchoff form:

σij = λδijεkk + 2µεij (3)

Equations (1), (2) and (3) form a system of 15 equations
with 15 unknowns (stress, strain and displacement) and so the
unknowns can be determined. Substituting (2) into (3) and
then substituting the result into (1) gives the Navier-Cauchy
linear elastic PDE:

µ∇2u(x) + (µ+ λ)∇(∇.u(x)) + f(x) = 0 (4)

where u(x) is the displacement vector at positionx, and
f(x) denotes the body force per unit volume, which drives
registration. It is possible to determine eigenfunctions of (4).
These are products of univariate sinusoidal functions [48], [7,
ch 9] and have the following form:

φk =





sin(aπx)cos(bπy)cos(cπz)
cos(aπx)sin(bπy)cos(cπz)
cos(aπx)cos(bπy)sin(cπz)



 (5)

The corresponding eigenvalues are given by:

λabc,j = π2(a2 + b2 + c2)

{

(2µ+ λ), j = 1
µ, j = 2, 3

(6)

The second order terms of the displacement gradient are
ignored in (2). This leads to error for large deformations. Fur-
thermore, many biological materials have a non-linear stress-
strain relationship which also leads to error. Consequently, the
linear model (4) is only really accurate for small deformations.

Linear elastic algorithms

The Navier-Cauchy PDE (4) is essentially an optimisation
problem that involves balancing the external forces (image
similarity) with the internal stresses that impose smoothness
constraints [4]. It can be solved using variational [7], finite dif-
ference [49], [50], FEM models [51], basis function expansion
[48] and Fourier transform methods [7].

Broit [49] was the first to propose a linear elastic model
for nonrigid image registration. In [49, ch 6] an iterative
algorithm is described that determinesu for which the internal
stresses and external forces of (4) are in equilibrium. The PDE
is solved by the finite difference method on a rectangular
lattice. The first and second derivatives,∂u

∂x
and ∂2u

∂x2 , are
approximated using discrete derivatives. This results in three
linear equations, one for each Cartesian direction (i.e.fi, fj,
fk). These linear equations can be solved iteratively from
the initial and previously calculated displacements determined
using Gauss-Seidel or Jacobi methods. This gives a value of
u for each lattice point.

Bajcsy et al. [50] improved this approach. Prior to elas-
tic registration they corrected for global differences using a
transformation consisting of translation, rotation and scaling.
This was determined by aligning the centres of mass, ellipsoid
axes etc. They used a multi-resolution version [50], [52] of
Broit’s [49] elastic model. The external force was based on
the cross correlation of image features. These consisted ofthe
local mean intensity, horizontal and vertical edges that were
extracted from the images.

Davatzikos and Bryan [53] designed an elastic algorithm
for inter-subject registration of cortical grey matter. They
modelled the brain cortex as a thin spherical shell of constant
thickness and described the central layer parametrically by
α(u, v), with surface parametersu andv and a surface normal
N(u, v). Deformation was modelled as a uniform dilation
or contraction with bending (homothetic mapping) between
the two surfaces. Their model is also based on a balance
between internal and external forces. The external force has
two components, the first one deforms a pointx towards the
shell. This attractive force is simply the distance betweenthe
point x and the centre of mass functionc(x), i.e. f(x) =
c(x)−x. The second external force acts normally to the shell’s
surface and has magnitudeγ, this either expands or dilates the
shell depending on its sign. This leads to the following PDE:

β(u, v) [xuu(u, v) + xvv(u, v)] + [1 − γ(u, v)]

×{c(x) − x} + γ(u, v)N(u, v) = 0 (7)

where the repeated subscript refers to partial differentiation.
The first term in (7) refers to the elastic force (Laplacian) and
the second and third terms refer to the external forces. They
solve (7) iteratively. The image is partitioned into2N × N
square sub-images and the partial derivatives are approximated
with finite differences. This gives a set of discrete variables
and functions of the formxi,j = x( i

2N
, j

N
), and leads to the

following discretised equation:

βi,j(xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j)

+(1 − γi,j)(ci,j − xi,j) + γi,jNi,j = 0 (8)

Equation (8) is solved iteratively using successive over-
relaxation [54].

In [55], Davatzikos further develops this approach to match
both the cortical and ventricular surfaces which are pre-
segmented from the images. A homothetic mapping is first
used to achieve a coarse match then this is further refined.
The refinement step is based on curvature and landmark
matching. Curvature matching involves determining the mini-
mum (κmin), maximum (κmax) and Gaussian (κG) curvatures
of the segmented surfaces. The matching criterion involves
determining the optimum displacement field such that:

arg min
u

∫

S

∑

α∈{min,max,G}
[bαs (u(x)) − bαt (x)]2dS (9)

wherebαt are binary values of voxels corresponding to target
(or sourcebs ) surfaces such thatbαt = 1 if κα > thresholdT
and bαt = 0 otherwise. The curvature matching results in an
external forcef1 of the form:

f1 = −
∑

α∈{min,max,G}
(∇bαs )(bαs − bαt ) (10)

The curved outlines ofN corresponding sulcisi
s(l) and

si
t(l), l parametrises the sulcal curve, are obtained manually

from the source and target images respectively. The displace-
ment functionu can be constrained by minimising the squared
distance between corresponding landmarks as follows:

argmin
u

N
∑

i=1

∫

L

||u(si
s(l)) − si

t(l)||2dl (11)
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This results in a second forcef2 that is proportional to the
sum of residual distances between the two sets of landmarks:

f2 = −
N

∑

i=1

(u(si
s(l)) − si

t(l)). (12)

The forcesf1 and f2 are then incorporated as external forces
in the Navier-Cauchy linear elastic PDE (4) as follows:

λr∇2u + (µr + λr)∇(∇.u) + f1 + f2 = 0 (13)

Equation (13) defines a 3-D elastic deformation that brings the
cortical surfaces into registration. Davatzikos points out that
there are large shape differences of certain brain structures
across a population, e.g. the lateral ventricles. To accommodate
this they propose to model the brain as an inhomogeneous
body with non-zero initial strain (ε) at the ventricular surface.
This results in a modified Navier-Cauchy PDE, of the form:

{f + λ∇2u + (µ+ λ)∇(∇.u)}
+{(∇u + ∇uT − 2I)∇λ+ (∇.u − 3)∇µ}
+{ε(2∇λ+ 3∇µ) + (2λ+ 3µ)∇ε} = 0. (14)

The first term of (14) is the standard Navier-Cauchy PDE (4),
the second term allows for material inhomogeneity and the
third term allows for the pre-strained ventricular surface.

Validation of Bajcsy’s algorithm:Bajcsy et al. [50] vali-
dated their elastic algorithm by registering a segmented brain
atlas to patient CT scans. They manually segmented the
ventricles in patient images and compared this to the corre-
sponding region propagated from the atlas. Results indicated
a maximum error of 3 to 4 pixels. Later Gee et al. [56]
validated the algorithm for atlas to MR registration. This time
the atlas was derived from myelin-stained sections to provide a
segmentation of GM, WM and CSF. The tissue were manually
delineated in the patient images. The voxel overlap was 66%
for the region bound by the brain and ventricular surfaces and
78% for the region bounded by the GM/WM interface.

Validation of Davatzikos algorithm:Davatzikos [55] evalu-
ated his algorithm using six T1 weighted 3-D MR brain images
of volunteers. Thirty six anatomical landmarks, corresponding
to sulcal roots, ventricular horns etc. were manually identified
and used to measure the registration error. The mean, maxi-
mum (std) registration error was 3.4, 10.4 (2.1) mm.

IV. FLUID FLOW TRANSFORMATIONS

A. Theory

It is often useful to register images where there are large de-
formations. Large deformations are typically needed for inter-
subject registration because of anatomical variation overa
population. A major limitation of the linear elasticity approach,
using the Navier-Cauchy PDE (4) is that it is based on the
assumption of an infinitesimally small deformation. Further-
more, for the regularisation strategy used in linear elasticity
(and TPS), the restoring force increases monotonically with
strain [57] which penalises large deformations. Christensen
et al. [48], [57], [58] proposed a viscous fluid flow model
to recover large deformations. This was applied after linear
elastic registration.

Continuum mechanics provides the theoretical foundation
for fluid flow. There are many standard texts on continuum
mechanics, e.g. see [59] [47]. Fluid flow models are based on
idealised physical properties of fluids, e.g. they behave asa
collection of particles that conform to Newtonian mechanics.
Fluid models must satisfy physical laws such as the conserva-
tion of mass, energy, and linear and angular momentum. When
a fluid is stationary there is no shear stress and so the Cauchy
stress tensorσij consists entirely of normal stresses (the
hydrostatic pressurep). When a fluid flows the shear stresses
are no longer negligible. They are represented by a viscous
(shear) stress tensor. The Cauchy stress tensor then becomes
the sum of a hydrostatic pressure term and the viscous stress
tensor. The viscous stress tensor is usually considered to be a
function of the rate of deformation tensor. If this relationship
is linear then the fluid is known as Newtonian otherwise it
is considered Stokesian [47]. Fluid flow can be explained in
terms of the following notions from continuum mechanics:

• fluid velocity: In the Eulerian frame1, the velocity of an
element of mass passing throughx at time t is given
by the material derivative of the displacementu(x) as
follows:

v(x, t) =
∂u

∂t
+ v.∇u (15)

• rate of deformation: The velocity gradient tensor∂vi

∂xj

can be considered as the sum of a symmetric tensorD and
an anti-symmetric oneV such that∂vi

∂xj
= Dij +Vij . Dij

is referred to as the rate of deformation tensor andVij the
vorticity tensor. In tensor notation,Dij = 1

2 ( ∂vi

∂xj
+

∂vj

∂xi
)

andVij = 1
2 ( ∂vi

∂xj
− ∂vj

∂xi
). In vector notation, the rate of

deformation tensorD can be expressed as follows:

D =
1

2
(∇v + (∇v)T) (16)

wherev is the velocity vector andT denotes transpose.
• conservation of mass:Leads to the following continuity

equation:

∂ρ

∂t
+ ∇.(ρv) = η (17)

whereρ denotes the density of the fluid and the mass
source termη allows for arbitrary creation or destruction
of mass.2

• conservation of linear momentum:Leads to the equa-
tion of motion:

∇σ + f = ρ
dv

dt
+ ηv (18)

wheref , sometimes writtenb, is the body force per unit
volume.

• constitutive equations: For a Newtonian fluid the vis-
cous stress tensorσ is linearly related to the rate of
deformation tensorD as follows:

σ = −pI + λf tr(D)I + 2µfD (19)

1The Eulerian frame is thought by some authors [57] to be the most suitable
for tracking large deformations.

2Christensen et al. [57] argue that from an image registration perspective
it is often desirable to allow local mass creation or destruction, however they
do not seem to implement this in [57].
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wherep is the hydrostatic pressure andλf and µf are
the viscosity coefficients of the fluid,tr is the trace.

Substituting (19) into (18) and then substituting forD in (16)
allows us to derive the Navier-Stokes-Duhem equation.

ρ
dv

dt
= f −∇p+ (µf + λf )∇(∇.v) + µf∇2v − ηv (20)

For very slow flow rates (low Reynolds number) it is possible
to neglect the inertial termsρdv

dt
andηv.

Assuming there is only a small spatial variation in the
hydrostatic pressure then∇p can also be neglected and (20)
simplifies to the Navier-Stokes equation for a compressible
viscous fluid:

µf∇2v + (µf + λf )∇(∇.v) + f = 0 (21)

Essentially the Navier-Stokes PDE describes the balance of
forces acting in a given region of the fluid. It characterises
an equilibrium state where changes in momentum of the
fluid balance with changes in pressure and dissipative viscous
forces. Theµf∇2v term is associated with constant volume
or incompressible viscous flow whereas the(µf +λf )∇(∇.v)
term allows for the expansion or contraction of the fluid.
Remarkably, the Navier-Stokes PDE (21) is identical to the
Navier-Cauchy PDE of linear elasticity (4) except that the PDE
operates on velocityv rather than displacementu.

B. Fluid flow algorithms

These are based on the viscous fluid flow model defined
by the Navier-Stokes PDE (21). Because of the similarity to
Navier-Cauchy PDE (4) solutions of linear elasticity can be
transferred to fluid flow. Differential operators are applied
to a velocity field that describes pixel motion. Fluid flow
allows large localised deformations to be modelled, but has
the disadvantage of sometimes increasing registration error [4]
and high computational cost.

The most well known fluid flow algorithm is due to Chris-
tensen et al. [48], [57], [58]. The overall registration strategy is
based on a transformation hierarchy of successively increasing
numbers of degrees of freedom [58] starting with affine then
linear elasticity and finally a fluid flow algorithm [48]. The
fluid flow algorithm iteratively solves the Navier-Stokes PDE.
It evolves velocity fields that describe the motion of voxels
over time (iteration). The body forcef is determined from
image similarity like elastic algorithms. It is assumed to take
the form of a Gaussian sensor model [57]:

f(x,u) = −α[A(x) −B(x − u)]∇B(x − u) (22)

where [A(x) − B(x − u)] is the difference of intensities
between the target and deformed source images. The gradient
of the source image∇B(x − u) gives the direction of the
local forces applied toB. Given the current estimate ofu, the
velocity and body force can be estimated using (15) and (22).
This provides initial values for the Navier-Stokes PDE which
is subsequently solved in discrete time steps by successive
over-relaxation [60]. The updated velocity field then is used
to update the displacement field. For large deformations, the
numerical solution of the Navier-Stokes PDE can produce

displacement fields that become singular [57]. To avoid this
the determinant of the Jacobian of the transformation (J) is
tracked. Each time it falls below 0.5 a new source image is
generated by interpolation using the current displacementfield
and the algorithm is re-started using the new source image.

Solving the Navier-Stokes PDE is particularly computation-
ally intensive which is a major disadvantage. To address this
Christensen’s algorithm was implemented on parallel hardware
so that results could be obtained in a few hours [57]. Other
authors have proposed faster solutions. Bro-Nielsen et al.[61]
used a filter (convolution with Green’s functions) in scale
space. Freeborough et al. [27] solved the PDE hierarchically
using the full multi-grid method [62].

C. Validation of the fluid flow algorithm

Christensen et al. [57] experimentally compared the fluid
flow and linear elasticity algorithms. They used a synthetic
image pair consisting of a small rectangular patch (source
image) and a ’C’ shape with an area about an order of
magnitude larger. They reported that the fluid algorithm was
able to produce deformations to achieve an overlap> 90%
whereas the linear elastic algorithm only achieved about 25%.

D. Optical Flow

Optical flow [63] has been widely used to track small
scale motion in time sequences of images. It is based on
the principle of intensity conservation between image frames.
There is a similarity to fluid flow. The equation of motion
for optical flow can be derived by retaining the first order
terms of the Taylor expansion of the intensity function in the
target frame. It is possible to relate the displacement3 u to the
change in intensity between framesb(x)−a(x) and the spatial
derivative of intensity in the target frame∇a(x), as follows:

u.∇a(x) = b(x) − a(x) (23)

Demons algorithm:The demons algorithm [64] uses op-
tical flow model (23). First (23) is approximated to give a
numerically stable expression foru:

u(x) =
[b(x) − a(x)]∇a

(∇a)2 + [b(x) − a(x)]2
(24)

The displacement (force) on the source image is in the
direction of ∇a and its orientation is+∇a if b(x) > a(x)
and −∇a otherwise. A disadvantage of this model is that
there are no constraints of the displacement and it does
not necessarily preserve the topology. To reduce the effects
of noise the displacement field is smoothed by Gaussian
convolution. The algorithm iterates over time, during each
iteration an incremental displacement field is determined and
the source image is resampled for the next iteration.

3This is actually velocity - displacement over the time interval of the two
images. However, it can be considered as a displacement without loss of
generality.
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E. Continuum biomechanics

Although continuum mechanics explains well the behaviour
of simple rubber-like materials it does not explain well the
more complex behaviour of biological materials like soft
tissue. Continuum biomechanics is concerned with extend-
ing the theory, particularly non-linear continuum mechanics
[65], to deal with this. Humphrey [66] provides a detailed
review of the subject. An important observation here is that
although soft biological tissue has many different forms itis
composed of only two basic components: cells and an extra-
cellular matrix [66]. So mechanical models at a cellular level
should be able to explain tissue behaviour. Tissues could be
modelled as mixture-composites that exhibit anisotropy, visco-
elasticity and inelastic behaviour using the theory of elasticity
or visco-elasticity. The constitutive relations should beused
to describe the material under certain conditions and not the
material itself. In conclusion, new models are anticipatedthat
better explain: the multi-axial behaviour of muscle, growth,
remodelling, damage, regeneration, cell mechanics etc.

V. TRANSFORMATIONS BASED ONBASIS FUNCTION

EXPANSIONS

In general, these transformations are not derived from
physical models, but instead model the deformation using
a set of basis functions. The coefficients are adjusted so
that the combination of basis functions fit the displacement
field (cf. interpolation). Much of the mathematical framework
arises from the theory of function interpolation [67] and
approximation theory [68], [69]. In approximation theory it
is assumed that there is error in the samples, so the standard
interpolation requirement that the function intersects samples
is relaxed. As a result the approximating function is usually
much smoother than its interpolating counterpart.

Polynomial functions might seem an intuitive choice, how-
ever, global polynomials of degree larger than two can be
unstable [1, ch 8]. Radial basis functions and piecewise
polynomials (splines) are more stable and are widely used.

In general, these functions do not preserve the topology,
however, recent work [70], [71] has sought to design functions
that are diffeomorphisms, see section VI-C.

A. Radial basis functions

Radial basis functions [72], [73], [74] are functions of the
distance||x−xi|| between the interpolation pointx and basis
function centre or landmark positionxi. They can be defined
as follows:

f(x) =
N

∑

i=1

αiR(||x − xi||) (25)

where i indexes the landmarks, e.g. landmark pairs,N is
the total number of landmarks andαi are weights which are
determined by solving a set of linear equations. Examples
are the Gaussian [75] and the inverse multiquadric, IMQ [76]
defined in (29). These functions asymptotically tend to zero,
but have global support. RBFs are positive definite functions
which allows an optimal set of coefficients to be determined in
closed-form. This is a particularly useful property for landmark

based registration. Rohr et al. [77], [78], [79] and Fornefett et
al. [80] have extensively investigated RBFs for the landmark-
based registration of medical images. In [80] a general form
is given which consists of a sum of polynomials and RBFs:

u(x) =
M
∑

j=1

βjφj(x) +
N

∑

i=1

αiR(||x − pi||) (26)

This requires solving a set of linear equations of the form:
(

K P

P 0

) (

α
β

)

=

(

qk

0

)

(27)

where the matrixK has elementsRij = R(||pi − pj ||) and
P has elementsPij = φj(pi) and the column vectorsqk,
α, β have elements consisting of landmark positions and the
coefficients{αi} and{βj}.

Others have compared the performance of TPS to polyno-
mials and multiquadrics [81], [82], [83]. Arad [75] suggested
that the TPS had favourable properties for image registration.

B. Multiquadrics

The multiquadric (MQ) is a type of radial basis function
(25) with R(||x − xi||) is defined as follows [74]:

R(||x − xi||) =
√

r2i + d2 (28)

whereri is the Euclidean distance|x−xi|, x is an interpolated
point, andxi is the location of theith landmark. The parameter
d controls the amount of smoothing, largerd results in more
smoothing. The inverse multiquadric (IMQ) is defined as the
reciprocal of (28):

R(||x − xi||) = [r2i + d2]−
1
2 (29)

C. Weighted mean

The WMN is defined by:R(||x − xi||) = Gi(||x−xi||)
∑

N

i
Gi(||x−xi||)

chosen such thatGi(||x−xi||) is a monotonically decreasing
RBF such as a Gaussian or cubicGi(||x−xi||) = 1−3d2

i +2d3
i

where di = ||x−xi||2
||x−xn||2 [84]. The weighted sum makes it an

approximating rather interpolating function. The width ofR
is tuned to the density of landmarks and the function becomes
interpolating asR decreases [84].

D. Thin-plate splines

Historically, the TPS was used to design structures such
as aircraft wings [85]. Later it was applied to function [86],
[87] and spatial [88], [89] interpolation. Grimson [90] and
Terzopoulos [91] described the TPS function mathematically
as a variational Euler-Lagrange equation which minimises
the bending energy. Essentially the TPS is the solution of a
square Laplacian∇4u = cδ(0, 0) [92], [7]. Goshtasby [93]
applied the TPS to the registration of remote sensing images.
Bookstein et al. [92] introduced it into the modelling shape
deformation in medical image analysis. According to [6] it is
the most commonly used RBF.

The TPS is applicable to multi-dimensional interpolation
problems and has useful smoothing properties. It is usually
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used with sets of homologous features, anatomical landmarks,
which are typically manually located in the images. The TPS
can be used even if the landmarks are irregularly spaced. Given
a set of corresponding sets of features, the spline coefficients
can be determined by the method of least squares [94]. In 2-
D, the TPS has a logarithmic basis functionr2 log(r), in 3-D
this simplifies tor [80]. So the TPS displacementu(x) can
be determined as follows [8]:

u(x) = Ax + B + I

N
∑

i=1

Fir
2
i log(ri) (30)

u(x) = Ax + B + I

N
∑

i=1

Firi (31)

where (30) and (31) refer to 2-D and 3-D space respectively.
The matricesA and B define a affine transformation andI
is the identity matrix. Goshtasby [8] includes an additional
stiffness parameterd in ri such thatr2i = (x − xi)

2 + (y −
yi)

2 +d2. The coefficients of the linear transformation defined
by A andB and the TPS coefficients{Fi} are determined by
solving the set of linear equations at the locations of landmarks
in the source imageui = u(xi).

The TPS is a global supported function and so it cannot
accurately model localised deformation. Furthermore, outliers
have a global impact and also large deformations can lead to
singularities in the sets of equations that need to be solved
which can result in the topology not being preserved. The
global extent also leads to high computational complexity
when large numbers of landmarks are used. Hence some
authors have improved its computational efficiency [95], [96],
[97], [98].

E. Approximating thin-plate splines

Rohr et al. [79], [78] proposed an approximating rather than
interpolating TPS that is more robust to outliers which occur
because of errors in feature (landmark) localisation. Landmark
errors are considered as anisotropic and are measured using
a quadratic approximation term. The registration functional
Jλ(u) consists of a landmark registration measure term and a
TPS termJd

m(u) that regularises the transformation:

Jλ(u) =
1

N

N
∑

i=1

[qi−u(pi)]
TS−1

n [qi−u(pi)]+λJ
d
m(u) (32)

wherepi and qi denote landmarks in the source and target
images. The covariance matrixSn is a 3 × 3 matrix and
represents anisotropic landmark localisation errors,d refers
to the dimension of the image andm to the chosen deriva-
tive order of the functional. The termJd

m(u) is defined by
Jd

m(u) =
∑d

k=1 J
d
m(uk) andJd

m(uk) is defined as [99, p 30]:

Jd
m(uk) =

∑

α1+...+αd=m

m!

α1! . . . αd!

∫

Rd

(

∂muk

∂xα1

1 . . . ∂xαd

d

)2

dx

(33)
The Jd

m(u) term defines the TPS and controls the smooth-
ness of the transformation. Hence the minimisation of (32)
results in a smooth transformation that approximates the dis-
tance between the landmark sets. Theλ parameter controls the

weighting between the two terms, the transformation becomes
smoother asλ increases.

F. Wendlandψ-function

Fornefett et al. [80] required a transformation function that
could be used to model brain deformation resulting from
neurosurgery. These deformations tend to be highly localised
so standard RBFs such as TPS, MQ are unsuitable since they
are global supported. They formulated a number of criteria
that the transformation function should fulfil for landmark-
based brain registration:

(a) Locality: u should have compact support and the extent
of support region should be controllable.

(b) Solvability: Equation (27) describing the mapping of
landmark locations in the source image to the target
image must be solvable. This amounts to the function
u being positive definite.

(c) Preservation of topology: The transformation functionu

must be continuous and locally 1-to-1 and the determinant
of the Jacobian of the transformation must be positive, i.e.
det(∇uk) > 0 [100].

(d) The numerical solution should be computationally effi-
cient.

They selected theψd,k function of Wendland [101] which is
a locally supported RBF. Local support is desirable because
it also reduces complexity and speeds up optimisation. The
ψd,k function is multivariate inRd and isC2k continuous, It
has a similar shape to a Gaussian, but it has finite extent,
furthermore it is smooth unlike a truncated Gaussian. Like
other RBFs,ψd,k is positive definite inRd and has a minimal
polynomial degree ofbd

2c+3k+1 whereb.c denotes the floor
operator4.

ψd,k(r) = Ik(1 − r)
b d

2
c+k+1

+ (34)

where

(1 − r)ν
+ =

{

(1 − r)ν 0 ≤ r < 1
0 1 ≤ r

(35)

and I(f(r))k denotesk applications of the integral operator
I(f(r)) defined by:

I(f(r))
4
=

∫ ∞

r

xf(x)dx r ≥ 0 (36)

They selectedψ3,1 = (1 − r)4+(4r + 1) because it provides
smooth C2 continuity with minimal degree and therefore
computational expense for 3-D image registration. The local-
ity criteria (a) is satisfied by using a multiplicative scaling
factor a on the distancer, such thatψa(r) = ψ( r

a
). They

demonstrated experimentally that for largea >≈ 1000 the
function resembled a TPS, whereas fora = 50 it was much
more spatially constrained. They proved thatψ3,1 satisfies the
aforementioned criteria (a) - (d).

4The floor operatorbxc gives the largest integeri ∈ Z not greater thanx
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G. Elastic body splines

Davis et al. [102] proposed an elastic body spline (EBS) for
landmark based registration. The EBS is the solution to the
Navier-Cauchy PDE of linear elasticity (4). In general, they
assume a polynomial radially symmetric forcef(x) = cr2k+1.
They consideredf(x) = cr and f(x) = c

r
wherer = ||x||

(Euclidean norm) andc is a constant vector. This gives an
elastic displacement field of the form:

u(x) =

N
∑

i=1

R(x − pi)ci (37)

wherepi is the location of theith of N target landmarks and
ci are the coefficients associated with the force. Essentially,
this is a linear combination of translated basis functions
R, represented by a3 × 3 matrix. Consequently, the three
components of the PDE are coupled. They solve these three
coupled equations using the Galerkin vector method, see [46].
This transforms the three coupled PDEs into three independent
radially symmetric, biharmonic ones and results in the follow-
ing solutions for forcesf(x) = cr andf(x) = c

r
respectively:

R(x) = [(12(1 − ν) − 1)r2I − 3xxT ] (38)

R(x) = [(8(1 − ν) − 1)rI − 1

r
xxT ] (39)

whereν = λ
[2(λ+µ)] is the Poisson ratio,I is the3×3 identity

matrix andxxT is an outer product. The coefficients of the
force W = [cT

1 · · · cT
N ]T are determined from the system

of linear equationsW = K−1U where K is a 3N × 3N
matrix of R(pi − pj) elements andU = [uT

1 · · ·uT
N ]T a

vector of displacements. They solve forW using singular
value decomposition [62]. In comparison the volume spline
(VS) and 3-D TPS can be written in the formR(x) = r3I
andR(x) = rI. So apart from the multiplicative constants in
(38) and (39), the terms includingxxT can be considered as
modifications to the VS and TPS so that they conform to the
Navier-Cauchy physical model [102].

Kohlrausch et al. [103] argue that the force modelf(x) =
cr2k+1 in [102] does not decrease sufficiently fast and there-
fore models global rather than local deformations. So instead

they propose a Gaussian force modelf(x) = c

(
√

2πσ)3
e−

r2

2σ2

hence they refer to it as GEBS. The Gaussian model has the
advantage thatσ can be used to control the localisation of the
deformation. Following a similar approach to [102] they show
that a Gaussian force leads tou(x) = 1

16πµ
1

1−ν
R(x)c, µ is

the shear modulus andν the Poisson ratio, and the new basis
function has the form:

R(x) = [(4(1 − ν) − 1)
erf(r̂)

r

−
√

2

π
σ
e−r̂2

r2
+ σ2 erf(r̂)

r3
]I

+ [
erf(r̂)

r3
+ 3

√

2

π
σ
e−r̂2

r4
− 3σ2 erf(r̂)

r5
]xxT

(40)

where r̂ = ||x||√
2σ

and erf(x)
4
= 2√

π

∫ x

0
e−t2dt denotes the error

function. The Poisson ratioν depends on the material and

is limited physically such that0 ≤ ν < 0.5. They argue that
because the Gaussian asymptotically falls rapidly to near zero,
the affine and elastic registration can be determined separately.
This results in a similar system of linear equations as in [102].
They solveW coefficients using a Tikhonov regularisation
scheme [62]. In a continuation of this work, Wörz et al. [104]
have extended the method to deal with anisotropic landmark
localisation errors.

H. Quantitative comparison of EBS and GEBS

Kohlrausch et al. [103] created a simple brain model in
which the tumour can deform within a rigid cranium. The
symmetry of the model allows the Navier-Cauchy PDE to be
solved in a cylindrical coordinate system. They evaluated the
GEBS model by comparing it and the EBS model, with forces
f(x) = cr and f(x) = c

r
, to an analytical model for both

ν = 0 and ν = 0.49. In all cases, they reported that GEBS
outperformed EBS, in some cases by an order of magnitude.
However, a disadvantage of the GEBS is that its computational
complexity is several times larger than EBS.

I. B-splines

B-splines were originally proposed for interpolation by
Schoenberg [105] in the 1940s. Since then they have been
applied widely, they have been popular for interpolation
problems in signal processing since the 1990s [106], [107],
[108]. More recently some authors [107], [109] have argued
that B-splines are optimal as approximating functions. These
basis functions can be extended to multivariate ones using
tensor products. The FFD is an example of this. The mapping
function Φ : Ω 7→ Ω is modelled using translations of a
regularly spaced grid (lattice) of control points{Pi,j,k} where
i = bx/δxc, ... is the index of a control point andδx is the
control point spacing in thex direction. FFDs usually use com-
pact supported basis functions andΦ is expressed in terms of
local coordinates(u, v, w) with u = x/δx−bx/δxc.... Given a
set of univariate compact supported basis functions{ψl,N(x)}
of degreeN . The FFD mapping functionΦ(u, v, w) can be
defined as [110]:

∑N,N,N

l=0,m=0,n=0
ψl,N (u)ψm,N(v)ψn,N (w)Pi+l,j+m,k+n (41)

FFDs have been applied in deformable models of the heart
[111]. It was soon recognised that B-spline basis functions
had superior properties [112] and FFDs based on B-splines
were used for object modelling in 3-D [113] and 2-D [114],
[110] and for animations [115]. Declerck [116] applied cubic
B-spline FFDs to register SPECT cardiac images using the
iterative closest point of extracted surfaces as a registration
metric. Rueckert et al. [117] also used this FFD in combination
with a voxel intensity similarity measure to register dynamic
contrast enhanced MR breast images. The theory and meth-
ods for object modelling with polynomial and spline curves,
including B-splines is well developed, see [118], [119].
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B-spline Interpolation:B(asis) splines are a type of minimal
support spline that was introduced by Schoenberg [105] for
interpolation. A B-spline basis function of degree zeroβ0 is
a rect (step) function, the kernel used for nearest neighbour
interpolation. A degree one B-spline basis functionβ1 is
constructed by the self-convolution ofβ0, i.e. β1 = β0 ∗ β0.
A B-spline basis function of degreeN is constructed from
N such convolutions, i.e.βN = β0 ∗ ... ∗ β0 (N times). The
support of B-spline basis functions depends on its degree we
denoteβi,n as a B-spline basis function of degree5 n that is
applied to an interval defined by the knot pointxi. B-spline
basis functions of an arbitrary degree can be defined using the
Cox-de Boor recursion formula, see [118]:

βi,0(x) =

{

1 if xi < x < xi+1

0 otherwise
(42)

βi,n(x) =
x− xi

xi+n − xi

βi,n−1(x)

+
xi+n+1 − x

xi+n+1 − xi+1
βi+1,n−1(x) (43)

B-splines can be used as either interpolators or approximators.
Approximators do not intersect samples, but instead minimise
an error metric such as theL2 norm. When used as approxima-
tors B-splines are said to provide an optimal tradeoff between
a smooth function and a close fit to the data samples [107],
[108]. This property is useful because often it is desirable
to have a smooth fit to noisy sample points. To construct a
B-spline interpolator it is necessary to pre-filter the image
with a high-boost filter. If this is ignored then there is too
much low-pass filtering. Unser [106] proposed using a spatial
domain recursive filter to pre-filter a discrete function prior
to B-spline interpolation. In summary, the discrete function
f∆x(j) with sample pointsj ∈ Z and sample interval∆x
can be interpolated to a continuous functionf∆x(x) [67] as
follows:

f∆x(x) =
∑

j∈Z

f∆x(j)
∑

k∈Z

(bn)−1
k βk,n (44)

The functions
∑

k∈Z
(bn)−1

k βk,n are infinite impulse response
filters known as cardinal splines of degreen.

Curve fitting using de Boor control points:A fundamental
theorem of B-splines [105], [120] states that any spline func-
tion of degreen, Sn(x) can be represented as a linear com-
bination of B-spline basis functions of the same degree over
the same partition i.e.Sn(x) =

∑+∞
k=−∞ c(k)βk,n(x). Curve

fitting can be achieved using a set of de Boor control points
{Pi} that are joined to form a de Boor polygon, see Figure
1. The control points are adjusted so thatSn(x ∈ [x0, xm]) =
∑m

i=0 βi,n(x)Pi fits the data samples. The number of control
points depends on the degree of splines and the number of
knots.

Free-form deformations:FFDs are similar to the idea of
tensor products of univariate splines suggested by de Boor
[118, ch 17] for modelling surfaces. Sederberg and Parry [121]

5The notationβn as in [67] is used rather thanβn+1 to denote a B-spline
basis function of degreen

x1 = P0

x2

x3

x4

x5 x6

x7

x8 = P9

P1

P2

P3

P4

P5 P6

P7 P8

Fig. 1. De Boor Polygon consisting of control points{P0, · · · ,P9} that
defines the spline curvex1, · · · , x8

generalised this to volumes. The image domain is partitioned
into a lattice of rectangular sub-domains that are aligned with
the image axis. They used globally supported Bernstein basis
functionsbp,q which resulted in the following FFD:

Φ(x, y, z) =

l,m,n
∑

i=0,j=0,k=0

bi,l(x)bj,m(y)bk,n(z)Pi,j,k (45)

In this casel,m, n denote the number of control points in the
three directions. The Bernstein polynomial basis functions are
defined by:

bp,q(x) =

(

q
p

)

xp(1 − x)q−p (46)

They suggested that other basis functions such as B-splines
would be suitable. FFDs have advantages compared to previ-
ous surface based methods. This is because the deformation
model is object-independent in the sense that it applies to 3-D
space and is independent of the object’s surface.

Hsu [112] argued that cubic B-splines had superior prop-
erties compared to the Bernstein polynomials used in [121].
They provide both local control within a support region and
continuity when control points are moved - they joinC2

smoothly at the knots. For cubic B-splines the support region
is four control points in each direction. andβi,n represents the
ith B-spline basis function of degreen. Their FFD takes the
following form within the support region:

Φ(u, v, w) =

3,3,3
∑

l=0,m=0,n=0

βl,3(u)βm,3(v)βn,3(w)Pi+l,j+m,k+n

(47)
with cubic B-spline basis functions:

β0,3(u) = (1 − u)3/6

β1,3(u) = (3u3 − 6u2 + 4)/6

β2,3(u) = (−3u3 + 3u2 + 3u+ 1)/6

β3,3(u) = u3/6

Lee et al. [114], [110] proposed a multi-level cubic B-
spline FFD for landmark-based matching of 2-D images. They
showed that a one-to-one mapping could be achieved by
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limiting the displacement of control points to less than half
the control point spacing. Their FFD had local form:

3,3
∑

l=0,m=0

βl,3(u)βm,3(v)Pi+l,j+m (48)

They chose control point locations based on dyadic sub-
division. They regularised their transformation by using acost
function that was based on the TPS bending energy and an
image energy termGσ ∗|∇(I)|2 , where∗ denotes convolution
andGσ a Gaussian of standard deviationσ.

Gao and Sederberg [115] used a FFD to generate animations
with minimal human interaction. They chose a hierarchy of
first order (linear) B-splinesβi,1 on a grid of2k × 2k control
pointsPi,j . Their FFD has the form:

2k,2k

∑

l=0,m=0

βl,1(x)βm,1(y)Pi+l,j+m (49)

where

βj,1(x) =







2kx− xj if
xj

2k < x <
xj+1

2k

xj + 2 − 2kx if
xj+1

2k < x <
xj+2

2k

0 otherwise
(50)

They used a regularisation strategy based on minimising a cost
functionC = Ci + αCa + βCs that incorporates rudimentary
deformation energy termsCa and Cs as well as colour
image similarityCi. The Lagrange multipliersα and β are
determined empirically.

Registration using B-splines:Rueckert et al. [117] proposed
using a cubic B-spline FFD with a voxel intensity similarity
measure. The algorithm searched for the set of control point
displacements that minimised the cost functionC(T(x)) =
S(A,B(T(x)))+λE(T(x)). WhereS(A,T(B)) is the image
similarity measure andE(T) is the TPS bending energy. The
Lagrange multiplierλ controls the amount of regularisation
and was chosen empirically. Normalised mutual information
was used for similarity metric andC(T(x)) was minimised
using a gradient descent method. The FFD grids can be con-
structed hierarchically so that deformations can be determined
by multi-resolution, see [28].

Kybic et al. [30], [122] proposed cubic B-splines as a
deformation model of the distortion in echo planar MR brain
images [30] and and for the registration of MR, SPECT and
CT images of the brain and heart [122]. In a continuation of
this work, Sorzano et al. [123] used cubic B-splines to model
both image deformation and also to interpolate images. Their
2-D transformation is defined as follows [122]:

u(x) =
∑

i,j∈Z

ci,jβ
n(
x

h
− i)βn(

y

h
− j) (51)

whereβn(x) =
∑

r∈{−1,1}(
n+1

2 − rx)βn−1(x − r
2 ), h is a

multi-resolution scaling parameter andn = 3 for cubic B-
splines. They argued that a function regularisation strategy
based on a Laplacian or TPS bending energy is deficient
because only pure second order derivatives and not cross-
terms of first order derivatives are considered. To overcome
this, they proposed a regularisation scheme based on two
terms, the gradients of the divergence

∫

R2 ||∇(∇.u)||dx and

the curl
∫

R2 ||∇(||∇ × u||)||dx of the displacement field.
They evaluated the accuracy of this approach using 2-D
electrophoresis images and simulated barrel and pincushion
distortion. According to their results the convergence rate was
faster when regularisation was used and faster still when both
regularisation and landmarks were used. However, there was
no comparison between their proposed method of regularisa-
tion and the standard Laplacian one.

Validation of Rueckert’s B-spline FFD algorithm

The cubic B-spline FFD was compared to an affine model
for the registration dynamic contrast enhanced MR breast
images [117]. According to this when there was subject
motion, the FFD out-performed both the rigid or affine models,
in terms of both the correlation of voxel intensities and visual
assessment. In [28] the algorithm was evaluated by compar-
ing atlas propagations of the cerebral lateral ventricles with
manual segmentations. Here it was found that the algorithm
was accurate enough to compare cohorts when there was a
small deformation. In [124] a bio-mechanical model was used
to generate deformations and these were compared with the
ones determined using the registration algorithm.

J. Piecewise affine

This is sometimes also termed block-matching, multiple
or poly-affine registration. It is a relatively simple model,
the source image is divided into a number of rectangular
sub-images or blocks and these are individually registeredto
the target image. Typically an affine or rigid-body model is
used. This approach invariably uses a voxel intensity similarity
metric as a registration measure. This gives a uniformly spaced
displacement field. However, it has a particular problem in
that the displacement field is not necessarily continuous. Many
authors solve this by regularization, for instance, by low pass
filtering. Another issue is the number of degrees of freedom
or, equivalently the size of the blocks. If there are too few
voxels in a block then there is insufficient information to drive
registration.

The original method is usually credited to Collins et al.
[125]. They used it for brain segmentation, to determine the
geometrical variability of brain structures across a population.
The algorithm was named ANIMAL and was intended to
be used for inter-subject brain registration. It assumes that
brain deformation can be modelled as a set of translations at
regularly spaced nodes of a dense 3-D cubic lattice. It uses a
hierarchical strategy in which the images are convolved with
a Gaussian kernel and its first derivative. Large deformations
are recovered first at coarse scales and then smaller ones at
finer scales. The algorithm iteratively optimises a cost function
consisting of a voxel similarity measure and a regularisation
term. The similarity measure is based on normalised cross
correlation (NCC). The regularisation termC is a function of
the magnitude of the displacement of each voxelu(x) and the
FWHM of the Gaussian convolution kernel,umax, it has the
following form:

C(x) =
∑

x∈X

cu(x)
2
3

u
2
3
max − u(x)

2
3

(52)
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wherec is a constant. A pre-segmented atlas is used for the
target image. The subject images are registered to this and the
transformation is inverted and used to propagate the segmenta-
tion into the subject images. The algorithm was evaluated by
comparing displacements of 34 manually located landmarks
from 3-D MR brain scans ofn = 17 normal subjects [125].
The average standard deviation of voxel displacements in the
three Cartesian directions was 4.2mm for the algorithm and
3.9mm for the manual method.

K. Wavelets

In Fourier analysis, a function6 is decomposed into a set of
sinusoidal basis functions. Sinusoidal functions are perfectly
localised in frequency, but completely unlocalised in space.
In contrast, in wavelet analysis, basis functions are localised
in both the frequency and spatial domains [126]. Wavelets
are implicitly designed for the multi-resolution analysisof
signals. A vector function sub-space ofL2(R) is constructed
from a nested set of sub-spacesV 0 ⊂ V 1 . . ., such that
V i+1 = V i ⊕ W i whereW i contains the additional detail
to generateV i+1. V i and W i are respectively constructed
from usually orthogonal sets of scaling{φa,b} and wavelet
{ψa,b} functions. Defined asφa,b = 2−

a
2 φ( x

2a − b) and
ψa,b = 2−

a
2 ψ( x

2a − b). A 1-D function can be represented
as an expansion of translated and dilated scaling and wavelet
basis functions as follows:

f(x) =
∑

a∈Z,b∈Z

< f(x), φa,b > φa,b

+
∑

a∈Z,b∈Z

< f(x), ψa,b > ψa,b (53)

Wavelets have an advantage over the Navier-Cauchy eigen-
functionsφk in (5) because they allow deformations with local
support to be modelled from a finite set of basis functions.
Furthermore, they provide an implicit multi-resolution repre-
sentation of the transformation.

Amit [127] considered registration as a variational problem
whereu(x) is obtained by minimising a cost function consist-
ing of the sum of square intensity differences and a smoothing
term. Hereu(x) is modelled in 2-D by the wavelet expansion
∑

i

∑

n,k,l < u(x), ψi
n,k,l > ψi

n,k,l with basis functions that
are tensor products ofψn,k andφn,k.

ψ0
n,k,l = φn,k(x1)φn,l(x2)

ψ1
n,k,l = φn,k(x1)ψn,l(x2)

ψ2
n,k,l = ψn,k(x1)φn,l(x2)

ψ3
n,k,l = ψn,k(x1)ψn,l(x2) (54)

The smoothing term is:

u2
00 +

∞
∑

n=1

2n−1
∑

k,l=0

(1 + 42n)

3
∑

i=1

< u(x), ψi
n,k,l >

2 (55)

whereu00 =< u(x), φ0,0 >, with φ0,0 = 1, The optimal value
of u(x) is found by gradient descent and the inner products

6The function is assumed to be continuous, real-valued and square inte-
grableL2(R), i.e.

∫

∞

−∞

|f(x)|2dx < ∞

are determined by the fast discrete wavelet transform of Mallat
[128] using Daubechies [129] compactly supported wavelets.

Gefen [130], modelledu(x) in 3-D with a wavelet expan-
sion:

u(xi) =

N−1
∑

k=0

ci1JkΦ1
J,k +

N−1
∑

k=0

8
∑

s=2

J
∑

j=R

cisjkΦs
j,k (56)

whereΦs
J,k is determined from the tensor product of 1-D order

3 spline wavelet basis functions, cf. (54) ands denotes the
sub-band. In this approach the Navier-Cauchy PDE is solved
by minimising the elastic energy functional separately for
each component of the deformation field using the Levenberg-
Marquardt algorithm. Gefen compared the wavelet and TPS
models for inter-subject registration of histology imagesof rat
brains. The mean surface error of both methods decreased with
the number of registration parameters. For the same number of
parameters, the wavelet method was about 10% more accurate
than the TPS, however it is substantially more computationally
intensive. For the TPS, the number of parameters depends
on the number of corresponding points. However, for the
wavelet method it depends on the number of voxels. The
wavelet method can therefore be applied at a finer scale, 2800
parameters gave an accuracy of 2.39 voxels.

Wu et al. [131], [132] expressed the displacement field as a
wavelet expansion and determined the optimal set of wavelet
coefficients with a coarse-to-fine optimisation strategy using
the Levenberg-Marquardt algorithm. They required a smooth
solution and chose the wavelet function of Cai and Wang [133]
which are cubic spline basis functions that span a Sobolev
rather thanL2 space.

Piecewise affine with optical flow regularisation:Hellier
et al. [134] proposed a multi-resolution algorithm based on
a piecewise affine transformation regularized with an optical
flow model. They used a quadratic form of optical flow,
defined by (23). They added a second regularisation term
||u(x) − u(x0)||, wherex0 is in ν(x) a neighbourhood ofx,
to smooth the displacement field. The combined cost function
was:

C(u) =
∑

x∈X

[u(x).∇a(x) + a(x) − b(x)]2

+ α
∑

x0∈ν(x):x∈X

||u(x) − u(x0)||2 (57)

They used a multi-resolution strategy to circumvent the small
displacement limitation of optical flow. This consisted of both
a Gaussian image pyramid and a multi-grid method. The multi-
grid method involved partitioning the image into rectangular
blocks. The displacement field for each block is estimated
using the robust M-estimator [135], [136], [137]. The M-
estimator [135] is a robust maximum likelihood estimator
that decreases the weighting of values at the tails of the
distribution. It is typically used for iterative least squares
problems to reduces the impact of outliers. The transformation
model used depends on the number of voxels in the block. For
blocks with 12 or more voxels a full affine is estimated, for
ones with between 6 and 12 voxels a rigid-body and for those
less than 6 a simple translation is used. The multi-grid method
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is thought to have an advantage of being robust to MR intensity
inhomogeneities which tend to be low spatial frequency.

VI. CONSTRAINTS ON THE TRANSFORMATION

A. Inverse consistency

Christensen and Johnson [138], [139] used inverse con-
sistency as regularization constraint. Inverse consistency can
be explained by considering the transformations obtained by
registering imageA to B as TAB and the inverse one from
B to A as TBA. If the transformationsTAB and TBA are
consistent their composition is the identity. For almost all
registration algorithmsTAB 6= T−1

BA. So they introduced a
regularization constraint that penalises the inconsistency. In
[138], they consider linear elastic registration as definedby
the Navier-Cauchy PDE (4). The cost functionC is a linear
combination of: image similarityCsim, the consistency of the
forward and backward transformationsCicc, and a regulari-
sation term that is related to the energy of the deformation
Creg. Csim = S(A,B(TBA(x)) + S(A(TAB(x), B) the
square difference similarity measure is used soS(A,B) =
∫

Ω |A(x) − B(x)|2dx. Cicc is determined from the residual
between the forward and backward transformation, i.e.Cicc =
Cicc(A,B)+Cicc(B,A) with Cicc(A,B) =

∫

x∈Ω
[TAB(x)−

T−1
BA(x)]dx. Creg relates to energy of the transformation

Creg = Creg(A,B) + Creg(B,A) where Creg(A,B) =
∫

x∈Ω |LTAB(x)|2dx.

B. Topology preservation

The topology can be preserved by ensuring that two condi-
tions are fulfilled [140]: (a) the determinant of the Jacobian of
the transformationJ is always positive; (b) the transformation
is bijective. Continuity is implied by the existence ofJ .

Noblet et al. [141] proposed a method to ensure thatJ > 0
for a hierarchy of linear B-splines. For B-splines of degree
one, the displacement can be represented as a product of three
terms of the formav + bvv wherev is x or y or z. Expanding
the determinant of the derivative terms leads to an expression
for J in terms ofx, y andz:

J(x, y, z) =

2,2,2
∑

i,j,k=(0,0,0)

αi,j,kx
iyjzk (58)

Given a gradient descent optimisation method with step length
δ it is possible to expressJ as a function ofδ i.e. J(x, y, z, δ)
in (58). In this way it is possible to limitδ so thatJ > 0.

C. Diffeomorphic transformations

Miller et al. [142] proposed that the group of diffeomorphic
mappings, as proposed by Christensen et al. [57] for fluid flow
registration, were suitable to generate groups of computational
anatomies [143], [144], [145]. The problem with the fluid
flow algorithm [57] is that singularities can arise from the
successive overrelaxation method used to solve the Navier-
Stokes PDE [146]. These can be avoided by regularising the
velocity field [146]. To achieve this a diffeomorphic space-
time mappingΦ(x, t) where x ∈ Ω and t ∈ [0, 1] is

required. This is mapping is related to the displacement field
by Φ(x, 1) = x + u(x) and satisfies the following [142]:

∂Φ(x, t)

∂t
= v(x, t) (59)

∂Φ−1(y, t)

∂t
= [∇Φ(y, t)]−1v(y, t) (60)

Φ(x, 0) = Φ−1(x, 0) = I. (61)

The functionΦ(x, t) describes a diffeomorphic flow through
space-time. The vectory is a location in the target image and
the derivative∇Φ(y, t) is the Jacobian of the transformation.
A numerical method for obtaining a diffeomorphism is given
in [147]. Joshi and Miller [70] describe how diffeomorphisms
can be used for landmark matching. The optimal displacement
û is determined by integrating the optimal velocitŷv over
time, i.e. û(x) =

∫

T
v̂(x, t)dt. The optimal velocity is

determined by minimising two terms. The first term relates to
the energy of the flow. The second term refers to the distance
(residual) between the the landmarks in the target image{qi}
and the time dependent mappings of the landmarks in the
source image{Φ(pi, t)}. This leads to the following equation
for the velocityv̂:

v̂ = arg min
v

∫

T

∫

Ω

||Lv(x, t)||2dxdt+D(Φ(p, T )). (62)

The differential operatorL is modelled on the Navier-Stokes
PDE (21) with incompressible flow i.e.∇.v = 0. Conse-
quently,L is a diagonal operator and takes the formLii =
−∇2 + c where c is a constant. The operatorL and its
boundary conditions are chosen so that the3×3 matrix Green’s
function G(x,y) is continuous inx and y and K(x,y) =
G(x,y)G(x,y)† is a positive definite operator. TheD(.) term
is given by:

D(Φ(p, T )) =

N
∑

i=1

[qi−Φ(pi, T )]TS−1
n [qi−Φ(pi, T )]. (63)

HereSn is a3×3 covariance matrix that represents anisotropic
landmark localisation errors. Thêv minimiser can be rewrit-
ten, see [70], in the following form:

v̂(x, t) =

N
∑

i=1

K(Φ(pi, t),x)

N
∑

j=1

[C−1]ij
˙̂
Φ(pj , t) (64)

with K(x,y) a diagonal matrix2(2π)
5
2√

c
exp(− 1√

c
||x−y||)I, I

is the3 × 3 identity matrix. Assuming a normally distributed
velocity field thenC is defined as a3N × 3N covariance
matrix with 3 × 3 sub-matricesCij = K(Φ(pi, t),Φ(pj , t)).

The time derivative of the optimal diffeomorphic mapping˙̂Φ
for the rth landmark is given by:

˙̂
Φ(pr ,T) = argmin

Φ̇

∫

T

N
∑

i,j=1

Φ̇T (pi, t)[C
−1]ijΦ̇(pj , t)dt

+ D(Φ(p, T )). (65)

They implement (64) by discretising time and determining
the perturbation of landmark displacements over each time
step, for details see [70]. They use simple test examples to
demonstrate thatJ > 0 for their transformation.
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VII. C OMPARATIVE EVALUATION OF NONRIGID

TRANSFORMATIONS

A critical aspect in choosing a transformation model is its
impact on the accuracy of the nonrigid registration algorithm.
However, this error is difficult to evaluate for real-world
medical applications. This is because of the difficulty in
obtaining ground truth transformations. A possible approach
is to use simulation, but this must be realistic to be valuable.
Furthermore, there are a wide range of potential applications
and for most of these the transformation model is not precisely
known. An alternative approach is to measure the geometric
error at corresponding landmark locations. A large number of
samples would be needed to give a representative estimate over
the entire image domain. Despite this, for many applications,
only the error at key structures is important so this approach
can be viable. A limitation here is the localisation error in
identifying landmarks.

There is little published work on the comparative evaluation
of nonrigid algorithms with different transformation models.
Two recent studies have been been published by Hellier et
al. [148] and Zagorchev and Goshtasby [84]. There are new
projects such as NIREP [149] that aim to provide systematic
evaluation strategies. Hellier et al. [148] evaluated six methods
for the inter-subject registration of MR brain images. These
consisted of rigid-body [150], [151] and nonrigid registration
algorithms and the proportional squaring method of Talairach
[40] which requires manual input. The nonrigid algorithms
were based on fluid flow [139], optical flow [64] and piecewise
affine [125] transformation models. They used a variety of
metrics to evaluate error, both globally over the entire image
domain and locally for certain key brain structures. According
to the global criteria accuracy appeared to increase with the
number of degrees of freedom of the transformation. Also,
folding was noted for the optical flow algorithm [64]. For
the local criteria there were mixed results and there was no
significant difference between rigid and nonrigid algorithms.
In conclusion, they recommended combining anatomical land-
marks with intensity-based registration to increase accuracy.

Zagorchev and Goshtasby [84] compared four landmark-
based methods (TPS, MQ, WMN and piecewise linear (PL) )
in terms of accuracy and computational cost. The TPS, MQ
and WMN are globally supported RBFs while PL is locally
supported. The WMN is an approximating function while
the others are interpolating. The accuracy generally depended
on the size of the local geometrical differences between the
images and the number and distribution of landmarks. When
there were large local geometrical differences, WMN and PL
were considered the most accurate. This was thought to be
because: (a) when landmarks are irregularly spaced there are
large errors for RBFs like TPS and MQ in image regions
with a low landmark density; (b) when the landmark spacing
is highly variable the system of equations that needs to be
solved for each component becomes ill-conditioned. When
there are small local geometrical differences and a small set
of widely spread landmarks then TPS and MQ were preferred
because they are interpolating functions. Generally, PL was
the most suitable method for images with local geometrical

differences because the local support property ensures that
errors are not propagated globally. When there is a large
number of landmarks with localisation error the WMN method
was preferred because (a) it does not require the solution of
a system of equations that could be numerically unstable and
(b) the averaging process when calculating the mean value
reduces noise effects.

VIII. C ONCLUSION

Nonrigid registration has become an important tool in
medical image analysis. It can provide automated quantitative
measurements for a large range of biological processesin-vivo.

In principle, physical models have the advantage of provid-
ing physically realistic solutions. However, some of these, e.g.
linear elasticity can only accurately model small deformations,
which is a limitation because often soft tissue exhibits large
deformation. Fluid flow is more appropriate for this and
can ensure that the topology is preserved. However, it does
not model the elastic component of tissue deformation and
contains a solution space that cannot be realised in many
tissue deformation states. Also the solutions of the associated
PDEs are often highly computationally complex. In reality,
tissue exhibits a complex behaviour, only in certain conditions
can it be considered as an elastic or visco-elastic material
and it usually behaves anisotropically. It is expected that
better physical models should emerge as our understanding
of continuum biomechanics advances [66].

Basis function expansions do not, in general, describe the
physical or biological processes that cause the geometrical
change. Instead they construct an interpolating or approximat-
ing function to model it. Some basis functions are compactly
supported which allows highly localised deformation to be
modelled. Compact support also has the advantage of reducing
complexity and speeds up optimisation. Generally, basis func-
tion expansions are easier to solve computationally than PDEs.
Radial basis functions are used for landmark-based registra-
tion. They simplify the multi-dimensional representationof
the deformation. They provide fast closed-form solutions.B-
spline and wavelet expansions are similar, but they do not use
a simplifying distance metric. Instead multi-dimensionalbasis
functions are constructed from linear combinations of univari-
ate ones. An optimal set of coefficients is typically determined
using a variational approach. B-splines and wavelets have
desirable properties such as smoothness and can be constructed
hierarchically. B-splines have less complexity than wavelets
and are smooth and compactly supported.

It is always beneficial to use as much information as
possible, so using additional landmarks should improve the
accuracy of a non-landmark based method, provided the
landmarks are accurately localised. It is possible to design
basis functions that satisfy physical models, e.g. [102], [103].
Similarly, preserving the topology or ensuring the transfor-
mation is diffeomorphic are principled strategies and can be
incorporated, for example as a regularization constraint.

Generally, there is a lack of evaluation studies of non-
rigid algorithms with different transformation models. Con-
sequently, it is difficult to draw robust conclusions about
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which methods are most accurate or best suited to a particular
application. New evaluation projects are being planned that
can address this. Evaluation could play an important role
in providing feedback when new continuum biomechanical
models ofin-vivo soft-tissue deformation are proposed.
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