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A review of geometric transformations for nonrigid
body registration

Mark Holden

Abstract— This paper provides a comprehensive and quantita- Definitions
tive review of spatial transformations models for nonrigid image

registration. It explains the theoretical foundation of the models Capture range The range of attraction of the registration
and classifies them according to this basis. This results im cat- P 9 9 9

egories, physically based models described by partial dééfential fun_ct|on. The spatial extent of.the set of mlsreglstr_atltmm_
equations of continuum mechanics (e.g. linear elasticityrad fluid ~ Which convergence to the optimal transformation is possibl
flow) and basis function expansions derived from interpoladbn CSF cerebrospinal fluid.

and approximation theory (e.g. radial basis functions, B-plines  Diffeomorphism A differentiable homeomorphism with a
and wavelets). Recent work on constraining the transformabn so differentiable inverse (non-zero determinant of the Jéob

that it preserves the topology or is diffeomorphic is also dscribed. - . . . .
The final section reviews some recent evaluation studies. €h matrix). It is a homeomorphism that maps one differentiable

paper concludes by explaining under what conditions a partular  manifold to another.
transformation model is appropriate. Eulerian coordinates These describe the motion of a body of

Index Terms— spatial transformations, nonrigid image regis- Particles relative to a set of fixed points in spacghrough
tration, linear elastic registration, fluid flow registrati on, para- Which particles pass. The Eulerian coordinate frame refters
metric transformation models, wavelet based registrationspline the current state of the system.

based registration. Homeomorphism A continuous bijective mapping with a
continuous inverse. Intuitively this is achieved by sthing,
Mathematical notation bending or compressing an elastic material without any cut-

ting.

Lagrangian coordinates These describe the motion of a
body of particles relative to its initial configuration. @iv the
position of a particleX at timet = 0, its positionx at timet

is given by a mapping from the initial to current configuratio
i.e.x = u(X,t)+X whereu(X, ¢) is the displacement vector.
Since deformations are assumed to be homeomorphisms there
exists a unique mappin&X = x — u(x,t) of the current
location x of a particle to its original oneX at ¢t = 0.

< f(#),g(x) > inner product of functiong (x) andg(x), i.e. | jurangian coordinates are also referred to as material or
[ f(z)g(z)dx where f(z) is the complex conjugate of(z). referential coordinates.

A, Lamé constants describing the mechanical propertiesip sitive definite function A function f : R — C is positive

an elastic material. , , definite if the associated matriA with elementsa;; =

A 1 VISC.OSIty cgefﬁuents qfaa V'S;C;’“S tlué;d' 3 f(z; — ;) is positive semi-definité/z;, z; € R. A matrix

v vector_ dlfferent_lal operatoti;; +ig, +kg; for R”. A is positive semi-definite it* Az > 0 for all vectorsz € C.

« domam of the 'mage. . . Support of a function Let f(x) be a real-valued function on

bi, Qi Zt.h landmark locations in the source and target 'MaYEBme setX. The support off is the smallest closed subset
respectively. Y C X outside of whichf is zero, i.e.f(z) =0Vx € XNY.

p fluid density. A function is said to have compact support if its supportoegi

o;; Cauchy stress tensor. is a compact subset of and global support i’ = X.

T spatial transformation, refers to the mapping from the 8P3ERs Elastic body spline. The solution of the Navier-Cauchy
of the source image to the space of the target. PDE of linear elasticity.

@ dlregt sum. oL FFD Free-form deformation.

u(x) displacement vector of poist in the space of the SOUrCe 5 ERS Gaussian elastic body spline
image. '
v(x) velocity vector.

A (x) target imagex € €2 is an image location.
B(x) source image to be aligned with(x).

D;; the rate of deformation tensor.

€;; strain tensor.

7 mass source term.

f(x) body force per unit volume acting &t

i,j Cartesian components.

| identity matrix.

GM Grey matter.
MQ A multiquadric is a type of radial basis function of form

Vi; vorticity tensor. Vit
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TPS Thin-plate spline. models or discuss the comparative evaluation of transftioma
VS Volume spline. models. This paper provides a comprehensive quantitative
WM White matter. review including an explanation of theoretical basis of the
WMN weighted mean radial basis function. models. It compares models and describes their limitations

This paper is organised by grouping transformations aecord
ing to their theoretical basis. This results in two main €ate
gories: those that originate from physical models of matsri

Image registration is the process of determining the caind those that originate from interpolation and approxiomat
respondence between objects in two images, by conventibeory. In addition to this, there are methods that constrai
between the source and the target image. To determine cothe transformation according to some desirable matheeiatic
spondences it is necessary to find the geometrical or spafigbperty. Accordingly the paper is organised with the faHo
mapping (or spatial transformation) applied to the sourdeg structure:
image so that it aligns with the target. The mapping is from th , Physical models

I. INTRODUCTION

image domair() to a subset or a superset @f For medical — linear elasticity
imaging, the mapping is usually 3-D to 3-D. Transformations _ viscous fluid flow
that preserve the distance between all points in the image ar ~ _ gptjcal flow

referred to as rigid-body transformations. They are edeita . Basis function expansions

to a change from one Cartesian system of coordinates to an- radial basis functions

other one which differs by shift and rotation. Transforroat _ B-splines

that allow for a global change of scale and shear are reféored — wavelets

as affine transformations. Affine transformations map pelral . ,
lines to parallel lines. Affine and rigid-body transforneats ~ * Constraints on the transformation

can be conveniently represented using homogeneous nsatrice ~ — INVerse consistency
these arel x 4 matrices for 3-D to 3-D mappings. — topology preservation
In contrast, nonrigid transformations map straight lines t — diffeomorphic transformations

curves. Nonrigid registration is the process of deterngjninlhe final section describes recent comparative evaluatioh s

such transformations given two images of an object. In gertdes of some of these models. In order to make the paper more
situations the deformation model is known, e.g. the geoméglf-contained and provide motivation a brief descriptan
rical distortion of the imaging system, but in most cases figgistration metrics and applications of nonrigid registm
is unknown. There are many different nonrigid transfororati follows on from the introduction.
models. In general, they can be divided into two categories: _
physical based models and function representations. TIR@Jistration metrics
physical models in general, are derived from the theory of A registration metric takes two images as input and returns
continuum mechanics and can be divided into two main suf-real value that indicates how well the images are aligned.
categories: elasticity and fluid flow. Function represéotst One of the simplest ones is based on the distance between
originate from interpolation and approximation theory.eyh corresponding pairs of landmarks that are extracted from
use basis function expansions to model the deformatiorreThémages. The landmarks can be anatomical features or fiducial
are many different types of basis functions, e.g. radialsbasnarkers that are rigidly attached to bone. For rigid-body
functions, B-splines and wavelets. registration the theory is well developed [1], [2], [10],1]1
There are a few reviews of rigid-body registration method42]. For nonrigid registration, landmarks are often usethw
[1], [2], [3] and a few that consider nonrigid transformau$o thin-plate splines, see section V-D. An advantage of laméima
[4], [5], [6], [7], [8]- Also there are reviews of related imga is that they enable the transformation to be determined in
warping methods [9]. Lester et al. [4] reviewed a number alosed form. Disadvantages are that a large number of them
transformation models, including linear elasticity, flfldw, are needed to densely sample the deformation field and also
function expansions and splines. They focussed on hidcaich the localisation process introduces error. Another pdggiks
strategies which can be applied to both the transformatioh ato use the distance between corresponding segmentedesirfac
data. Rohr [5] focussed on landmark based methods, partiBu this provides a registration metric only at the surfaaed
larly the TPS model and extensions to it. Zitova and Flussker [not throughout the image volume as is often required, also
provided a general review of image registration which idelsi the segmentation process introduces error. A more modern
a section on transformation models. Their review describapproach is to use an image similarity measure which gives
radial basis functions, elastic and fluid models. Modeks[Z] a quantitative measure of image alignment. For intra-nigdal
concentrated on numerical solutions to registration gols, registration, the sum of square difference or cross cdiosla
including nonrigid ones. This included elastic and fluid ralsd of the corresponding voxel intensities can be used. For-inte
and also radial basis functions. Goshtasby [8, ch 5] focussmodality registration measures based on information theor
on radial basis functions and compared them to piecewisech as mutual information perform well in the rigid case,
affine models. None of these provide a comprehensive revieee [3]. These measures have the advantage of providiryg full
of commonly used transformations such as B-splines aadtomatic algorithms and are suitable for determining dens
wavelets and few of them explain the underlying physicaleformation fields.
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Il. APPLICATIONS OF NONRIGID REGISTRATION segmentations can be mapped into anatomical images like

. , T MR [44], [45].
In general, application domains are: medical imaging, re-

mote sensing, and industrial imaging [8]. Crum et al. [13]
survey a variety of medical applications. Essentiallyr¢hare
two categories: intra-subject and inter-subject. Intrhject A. Theory

registration refers to the registration of scans of the samerpg heory of linear elasticity is based on notions of stress
subject at different times, while inter-subject refers I® t ;4 qain The stress at a given location is the contaceforc
registration of scans of different subjects, usually witle t o \hit area acting on orthogonal planes that intersect the
same imaging modality. A non-exhaustive list of the maiRcation. Stress can be analysed mathematically using the
applications is given below: Cauchy stress tensor. This a second rank tensor denoted by
« Motion correction: To correct for the deformation of &;;, the subscripts and; denote the three Cartesian directions
patient’s anatomy over time. For example, to correct fqk,y and z). Stress components are either normal to the plane
motion between pre-operative, intra-operative and post; or within it o;;, ¢ # j. This tensor has nine components
operative scans in neurosurgery. For instance to corregid can be represented a8 a 3 matrix. Strain is a measure
for brain-shift [14], [15] and facilitate navigation. Thees of the amount of deformation. It is treated in an analogous
deformations are mostly physical in nature and are causgely to stress as a second rank tensgmwith normale;; and
by: changes in the direction of gravity, changes in fluigheare;;, 7 # j components.
pressure, physiological motion associated with the heart,When a body is subject to an external force this induces
respiration, peristalsis or other muscle groups. internal forces within the body which cause it to deform.
« Motion determination: To quantify the physiological mo-The internal forces are grouped into body and surface forces
tion of the organ, e.g. heart [16], [17], lungs [18], [19Body forces are distributed throughout the volume and are
or joints [20] and use the measurements for diagnosis gpecified as force per unit volume. When a linear elastic
therapy monitoring. material is in an equilibrium state the body forded®alance
« Cross modality image fusion: To combine informationvith the surface stresses;. So the integral of the surface
from multiple scans of the same patient with differentstress) forces and body forces must be zero. Assumingtbat t
imaging modalities e.g. X-ray-MR [21], PET-CT [22],stress components vary linearly across an infinitesimat et
[23]. This is analogous to the rigid-body case except thitis possible to determine the following set of equilibrium
the tissue is deformable, the deformations involved aegjuations [46, page 20]:
similar to motion correction. 9 P 9
« Change detection: To detect and measure structural iR 2 1 f.=0 (z,y,2) (1)
change over time. For instance for monitoring disease Oz Oy 0z
processes (e.g. longitudinal studies) to aid either dihere (z,y,2) indicates that the other two equations are
agnosis or therapy. Typically measures of volume argbtainable through cyclic permutation af y and z. By
shape are used that are derived from the transformatioagplying Gauss’s divergence theorem to the force integral
Examples include multiple sclerosis [24], rheumatoiif can be shown that the stress tensgr is symmetric,
arthritis [25], Alzheimer's disease [26], [27], hormonehis reduces the number of independent stress components
therapy [28] and morphological changes resulting fromo six (0,4, 04y, 022, 02y, 0y2, 022). The normal and shear
surgical intervention [29]. infinitesimal strain can then be expressed in terms of thiéadpa
« Distortion correction: To measure and correct for gederivative of the displacement, as follows:
ometrical distortion of the imaging system. Possible

I11. LINEAR ELASTIC TRANSFORMATIONS

. . . ou
approaches are to register to scans of other imaging €op = —
modalities that exhibit less distortion [30], [31] or to use Ox
1.0u 0v
phantoms [32]. €oy = §[a—y + g] (x,y,z;u,v,w) (2)

« Atlas construction: To produce a representation of the av-
erage or variation in anatomy for a patient group. Atlases The constitutive equations for elasticity relate stresd an
can be either probabilistic [33], [34], [35], intensity leg@s strain tensors see [47], [46]. This relationship is exprddss
[36], label based [37], [38] or deformation based [39]. the generalised Hooke’s law,;; = Cjjrmerm. The quantity

« Atlas registration: This allows information from a groupCji.», is a fourth rank tensor referred to as the stiffness
of subjects to be combined and analysed in the standaedisor. Since there are six independent components for both
space of the atlas, cf. Talairach space [40]. the stress and strain tensors the tensor of elastic coastant

» Segmentation: Given an image containing a set of dé€s;.,, has 36 distinct elastic constants. For an homogeneous
lineated structures this can be registered to the subetropic material there are an infinite number of planes of
ject images and the transformations used to propagatanmetry. Hence, the constitutive equations are indepgnde
the delineations into the space of the subject image§the coordinate system. By considering rotational iraace
so providing a segmentation [41], [42], [43]. Accuratét is possible to reduce the number of independent constants
segmentations of tissue can be obtained from optidal just two [46]. These are the Lamé constantgnd ii. p is
images of histologically stained tissue samples. Theakso referred to as the shear modulus. Thus for an isotropic
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material the stress-strain relation simplifies to the folfy Davatzikos and Bryan [53] designed an elastic algorithm
Piola-Kirchoff form: for inter-subject registration of cortical grey matter. ejh
modelled the brain cortex as a thin spherical shell of canista
thickness and described the central layer parametrically b
Equations (1), (2) and (3) form a system of 15 equationgu, v), with surface parametetsandv and a surface normal
with 15 unknowns (stress, strain and displacement) andeso N (wu, v). Deformation was modelled as a uniform dilation
unknowns can be determined. Substituting (2) into (3) arat contraction with bending (homothetic mapping) between
then substituting the result into (1) gives the Navier-Gguc the two surfaces. Their model is also based on a balance
linear elastic PDE: between internal and external forces. The external foree ha
two components, the first one deforms a potntowards the
HVPu(x) + (p+ NV (Vu) +£(x) = 0 ) shell. Thﬁs attractive force is simply the distance betwten
where u(x) is the displacement vector at position and point x and the centre of mass functiatix), i.e. f(x) =
f(x) denotes the body force per unit volume, which drives(x)—x. The second external force acts normally to the shell’'s
registration. It is possible to determine eigenfunctiohg4). surface and has magnitugethis either expands or dilates the
These are products of univariate sinusoidal functions,[#8] shell depending on its sign. This leads to the following PDE:

ch 9] and have the following form: B, 0) [Xuw (1, 0) + Xoo (1, 0)] + [1 = (u, v)]

sin(anx)cos(bmy)cos(crz) %) — x w, v)N(u,v) = 0 7
¢k = | cos(amz)sin(bry)cos(crz) (5) X telx) b, v)N (e, v) )
cos(amx)cos(bry)sin(cnz)

Oij = Aéijekk + 2‘LL€Z']' (3)

where the repeated subscript refers to partial differéotia
The first term in (7) refers to the elastic force (Laplaciand a

The corresponding eigenvalues are given by: the second and third terms refer to the external forces. They
\ 22 R 2 2u+2A), j=1 6 solve (7) iteratively. The image is partitioned in2aV x N
abe,j = T (a” + b7 +¢) 1, j=2,3 6) square sub-images and the partial derivatives are appabetn

The second order terms of the displacement gradient g‘afgg ffl;r::::?iodl;ge;??ﬁs%m'_s_gﬂves ? szt O;gf?égiﬁﬁzl
ignored in (2). This leads to error for large deformations:-F following discretised e ua;iér; (35> %)»
thermore, many biological materials have a non-linearsstre 9 q '
strain relationship which also leads to error. Conseqygthi Bij(Xit1,j + Xi1,j + Xij+1 + Xij—1 — 4% )
linear model (4) is only really accurate for small deforroas. (1 —yi)(cij —xi;) +7iNij =0 8)

Equation (8) is solved iteratively using successive over-
i ] . ~_relaxation [54].

The Navier-Cauchy PDE (4) is essentially an optimisation | [55] Davatzikos further develops this approach to match
problem that involves balancing the external forces (imaggh the cortical and ventricular surfaces which are pre-
similarity) with the internal stresses that impose smoe#sn segmented from the images. A homothetic mapping is first
constraints [4]. It can be solved using variational [7],8rdif- seqd to achieve a coarse match then this is further refined.
ference [49], [50], FEM models [51], basis function expansi The refinement step is based on curvature and landmark
[48] and Fourier transform methods [7]. matching. Curvature matching involves determining theimin

Broit [49] was the first to propose a linear elastic mode},;m (5min), MAXIMUM €mqe) and Gaussiank(z) curvatures

for nonrigid image registration. In [49, ch 6] an iterativgyi the segmented surfaces. The matching criterion involves
algorithm is described that determinesor which the internal getermining the optimum displacement field such that:

stresses and external forces of (4) are in equilibrium. TDE P
is solved by the finite difference method on a rectangular argmin/ Z (b2 (u(x)) — b (x)]*dS  (9)
uJs

. . . . 2
lattice. The first and second derivative$: and 2-%, are a€{min,maz,G}

approximated using discrete derivatives. This resulthie \yherepo are binary values of voxels corresponding to target
linear equations, one for each Cartesian direction fi.ef;, (or sourceb, ) surfaces such thaf* = 1 if x, > thresholdl"

fr)- These linear equations can be solved iteratively frogyq by = 0 otherwise. The curvature matching results in an
the initial and previously calculated displacements deteed oyiernal forcef, of the form:

using Gauss-Seidel or Jacobi methods. This gives a value of

u for each lattice point. fi = - > (Vo3)(bg — bf) (10)
Bajcsy et al. [50] improved this approach. Prior to elas- ag{min,maz,G}

tic registration they corrected for global differencesngsa The curved outlines ofV corresponding sulck’ (/) and

transformation consisting of translation, rotation anelisg. si(1), | parametrises the sulcal curve, are obtained manually

This was determined by aligning the centres of mass, ellipsdrom the source and target images respectively. The digplac

axes etc. They used a multi-resolution version [50], [52] ghent functionu can be constrained by minimising the squared

Broit's [49] elastic model. The external force was based afistance between corresponding landmarks as follows:

the cross correlation of image features. These consistéueof N

local mean intensity, horizontal and vertical edges thatewe argminZ/ lu(si(l)) —si()||2dl (11)

extracted from the images. u = JL

Linear elastic algorithms
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This results in a second fordg that is proportional to the Continuum mechanics provides the theoretical foundation
sum of residual distances between the two sets of landmarks: fluid flow. There are many standard texts on continuum

N mechanics, e.g. see [59] [47]. Fluid flow models are based on
f, = — Z(U(Si(l)) —si(l)). (12) idealised physical properties of fluids, e.g. they behave as
im1 collection of particles that conform to Newtonian mechanic

The forcesf; andf, are then incorporated as external force§Uid models must satisfy physical laws such as the conserva
in the Navier-Cauchy linear elastic PDE (4) as follows: tion of mass, energy, and linear and angular momentum. When
a fluid is stationary there is no shear stress and so the Cauchy

A V24 (e +A)V(Vou) +f; +f,=0 (13) stress tensow;; consists entirely of normal stresses (the

. . . . . hydrostatic pressurg). When a fluid flows the shear stresses

Egrttj.acg?n (if?;;)cgeﬂ-ﬂfs ?egTDtrzlte'ljrt:c ggﬂ;rtm_z(t)lon t(?.i'f[ ;:L:';Stare no longer negligible. They are represented by a viscous
ical su st gistration. Davalzikos pol Eshear) stress tensor. The Cauchy stress tensor then become

?C?Lessa;e (ljarg;tii r;]ap;e dt':grlg?géslVoefnfr?gr:én_rzrggl stlrelstu he sum of a hydrostatic pressure term and the viscous stress
pop €9 ' tensor. The viscous stress tensor is usually considered t b

this the_y propose t(.) .”_"'°de' t_he brain as an mhomogene%lﬁctlon of the rate of deformation tensor. If this relasbip
body with non-zero initial strainej at the ventricular surface.

) . o . is linear then the fluid is known as Newtonian otherwise it
This results in a modified Navier-Cauchy PDE, of the form'is considered Stokesian [47]. Fluid flow can be explained in

{f +A\Vu+ (u+MNV(V.a)} terms of the following notions from continuum mechanics:
H{(Vu+ vu?l — 2)VA + (V.ou — 3)V) « fluid velocity: In the Eulerian framk the velocity of an

B element of mass passing throughat time ¢ is given
He@VA+3Vu) + (22 +3u) Ve =0. (14) by the material derivative of the displaceman(x) as

The first term of (14) is the standard Navier-Cauchy PDE (4), follows:

the second term allows for material inhomogeneity and the v(x,t) = ? +v.Vu (15)
third term allows for the pre-strained ventricular surface
Validation of Bajcsy’s algorithm:Bajcsy et al. [50] vali- e« rate of deformation: The velocity gradient tenso%

dated their elastic algorithm by registering a segmentaghbr ~ can be considered as the sum of a symmetric teBsand
atlas to patient CT scans. They manually segmented the an anti-symmetric on® such thatg:* = D;; +V;;. D;;
ventricles in patient images and compared this to the corre- is referred to as the rate of deformation tensorugdhe

sponding region propagated from the atlas. Results irgticat  vorticity tensor. In tensor notatior);; = (8”‘ + SZZ)

a maximum error of 3 to 4 pixels. Later Gee et al. [56] andV., = (BUL _ %) In vector notanon the rate of
. . . . .. ij Oz ox,

validated the algorithm for atlas to MR registration. Ttiiaeg deformatlon tensoD can be expressed as follows:

the atlas was derived from myelin-stained sections to plesgi

segmentation of GM, WM and CSF. The tissue were manually D= §(Vv +(vv)) (16)

delineated in the patient images. The voxel overlap was 66%

for the region bound by the brain and ventricular surfacets an wherev is the velocity vector and” denotes transpose.

conservation of massleads to the following continuity

78% for the region bounded by the GM/WM interface. ¢ tion:

Validation of Davatzikos algorithmDavatzikos [55] evalu- equation:
ated his algorithm using six T1 weighted 3-D MR brain images dp
of volunteers. Thirty six anatomical landmarks, corresing 5 TV (ov) =1 17)
to sulcal roots, ventricular horr)s etc_:. were manually idieat _ wherep denotes the density of the fluid and the mass
and used to measure the registration error. The mean, maxi- gqrce termy allows for arbitrary creation or destruction
mum (std) registration error was 3.4, 10.4 (2.1) mm. of mass.2

« conservation of linear momentum: Leads to the equa-
IV. FLUID FLOW TRANSFORMATIONS tion of motion:

. d
A Theory ) ) Vo+f= p—v +nv (18)

It is often useful to register images where there are large de _ _ d_t _
formations. Large deformations are typically needed foerin wheref, sometimes writtetb, is the body force per unit

subject registration because of anatomical variation aver volume.

population. A major limitation of the linear elasticity ajmach, e« constitutive equations: For a Newtonian fluid the vis-
using the Navier-Cauchy PDE (4) is that it is based on the Cous stress tensar is linearly related to the rate of
assumption of an infinitesimally small deformation. Furthe ~ deformation tensoD as follows:

more, for the regulari_sation stra_tegy used in Iinear_ alagti _ o = —pI+ Astr(D)I + 24D (19)
(and TPS), the restoring force increases monotonically wit

strain [57] which penalises large deformations. Christens The Eulerian frame is thought by some authors [57] to be thstsuitable

et al. [48], [57], [58] proposed a viscous fluid flow modef°!,"acking large deformations. _ o _
Christensen et al. [57] argue that from an image registrapierspective

to re_cover_ Iarge deformations. This was applied after in€gis often desirable to allow local mass creation or desioag however they
elastic registration. do not seem to implement this in [57].
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wherep is the hydrostatic pressure ar\d and ns are displacement fields that become singular [57]. To avoid this
the viscosity coefficients of the fluidy is the trace. the determinant of the Jacobian of the transformatidnig
Substituting (19) into (18) and then substituting Irin (16) tracked. Each time it falls below 0.5 a new source image is
allows us to derive the Navier-Stokes-Duhem equation. ~ generated by interpolation using the current displacerfnelt
dv and the algorithm is re-started using the new source image.
P = f—Vp+ (up + Ap)V(V.V) + 5 Viv — v (20) Solving the Navier-Stokes PDE is particularly computation
. _ally intensive which is a major disadvantage. To address thi
For very slow flow rates (low Reynolds number) it is possibleyistensen’s algorithm was implemented on parallel hareéw
to neglect the inertial terms%y andnv. ~__so that results could be obtained in a few hours [57]. Other
Assuming there is only a small spatial variation in thg «,qrs have proposed faster solutions. Bro-Nielsen 6.
hydrostatic pressure the¥ip can also be neglected and (20),5eq 5 filter (convolution with Green’s functions) in scale
simplifies to the Navier-Stokes equation for a compressiblace Freeborough et al. [27] solved the PDE hierarcicall
viscous fluid: using the full multi-grid method [62].

usQV—i—(uf +A)V(Vv)+£=0 (22)

Essentially the Navier-Stokes PDE describes the balanceSf Validation of the fluid flow algorithm

forces acting in a given region of the fluid. It characterises chyistensen et al. [57] experimentally compared the fluid
an equilibrium state where changes in momentum of thew and linear elasticity algorithms. They used a synthetic
fluid balance with changes in pressure and dissipative ¥&Cqmage pair consisting of a small rectangular patch (source
forces. Theu;V?v term is associated with constant volum@nage) and a 'C’ shape with an area about an order of
or incompressible viscous flow whereas the +A;)V(V.v) magnitude larger. They reported that the fluid algorithm was
term allows for the expansion or contraction of the fluidypje to produce deformations to achieve an ovetlap0%

Remarkably, the Navier-Stokes PDE (21) is identical t0 thgnhereas the linear elastic algorithm only achieved abo®.25
Navier-Cauchy PDE of linear elasticity (4) except that tidEP

operates on velocity rather than displacement
D. Optical Flow

B. Fluid flow algorithms Optical flow [63] has been widely used to track small

These are based on the viscous fluid flow model defingdale motion in time sequences of images. It is based on
by the Navier-Stokes PDE (21). Because of the similarity t@e principle of intensity conservation between image r'am
Navier-Cauchy PDE (4) solutions of linear elasticity can bghere is a similarity to fluid flow. The equation of motion
transferred to fluid flow. Differential operators are apgliefor optical flow can be derived by retaining the first order
to a velocity field that describes pixel motion. Fluid flowterms of the Taylor expansion of the intensity function ie th
allows large localised deformations to be modelled, but hasgrget frame. It is possible to relate the displacerhentb the
the disadvantage of sometimes increasing registratiam B4/ change in intensity between framigs) —a(x) and the spatial

and high computational cost. derivative of intensity in the target fram¥&a(x), as follows:
The most well known fluid flow algorithm is due to Chris-
tensen et al. [48], [57], [58]. The overall registratioras¢gy is u.Va(x) = b(x) — a(x) (23)

based on a transformation hierarchy of successively isorga
numbers of degrees of freedom [58] starting with affine then Demons algorithm:The demons algorithm [64] uses op-
linear elasticity and finally a fluid flow algorithm [48]. Thetical flow model (23). First (23) is approximated to give a
fluid flow algorithm iteratively solves the Navier-Stokes PD numerically stable expression faor,

It evolves velocity fields that describe the motion of voxels

over time (iteration). The body forcé is determined from u(x) = [b(x) — a(x)]Va (24)
image similarity like elastic algorithms. It is assumed aée (Va)? + [b(x) — a(x)]?

the form of a Gaussian sensor model [57]:

The displacement (force) on the source image is in the
f(x,u) = —a[A(x) — B(x —u)]VB(x —u) (22) direction of Va and its orientation ist+Va if b(x) > a(x)

and —Va otherwise. A disadvantage of this model is that

there are no constraints of the displacement and it does
Ha(ﬂt necessarily preserve the topology. To reduce the sffect
of noise the displacement field is smoothed by Gaussian

. ) ) onvolution. The algorithm iterates over time, during each
vel_ocny a_nd b(_)d_y_ force can be est|mat_ed using (15) and (_Zﬁ)ération an incremental displacement field is determined a
This provides initial values for the Navier-Stokes PDE Wh'cthe source image is resampled for the next iteration

is subsequently solved in discrete time steps by successive
over-relaxation [60]. The updated velocity field then isduise , _ _ .

date the displ ment field. For large deformati ¢ This is actually velocity - displacement over the time ingrof the two
to update the displacement field. For large deformatiores, fhages. However, it can be considered as a displacementutitoss of
numerical solution of the Navier-Stokes PDE can produgenerality.

where [A(x) — B(x — u)] is the difference of intensities
between the target and deformed source images. The grad
of the source imagé/B(x — u) gives the direction of the
local forces applied td3. Given the current estimate of, the
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E. Continuum biomechanics based registration. Rohr et al. [77], [78], [79] and Fortteée

Although continuum mechanics explains well the behavio@- [80] have extensively investigated RBFs for the landmar
of simple rubber-like materials it does not explain well thased registration of medical images. In [80] a general form
more complex behaviour of biological materials like softt 9iven which consists of a sum of polynomials and RBFs:
tissue. Continuum biomechanics is concerned with extend- M N
ing the theory, particularly non-linear continuum meclani u(x) = Z@»@(x) + ZaiR(HX - pill) (26)
[65], to deal with this. Humphrey [66] provides a detailed j=1 i=1
review of the subject. An important observation here is thg,is requires solving a set of linear equations of the form:
although soft biological tissue has many different formssit
composed of only two basic components: cells and an extra- ( K P ) ( Q ) _ ( dk ) 27)
cellular matrix [66]. So mechanical models at a cellularelev P 0 p 0

should be able to explain tissue behaviour. Tissues could \RRere the matrixk has elementst;; = R(||p; — p;||) and
modelled as mixture-composites that exhibit anisotropgor p pas elements’,; = ¢;(p;) and the column vectorsy,
elasticity and inelastic behaviour using the theory of ®#g , 3 have elements consisting of landmark positions and the
or visco-elasticity. The constitutive relations should dsed coefficients{;} and {3;}.

to describe the material under certain conditions and m®t th gthers have compared the performance of TPS to polyno-
material itself. In conclusion, new models are anticipateat ials and multiquadrics [81], [82], [83]. Arad [75] suggest

better explain: the multi-axial behaviour of muscle, griowt hat the TPS had favourable properties for image registrati
remodelling, damage, regeneration, cell mechanics etc.

B. Multiquadrics
V. TRANSFORMATIONS BASED ONBASIS FUNCTION ) ] ) ] ] )
EXPANSIONS The multiquadric (MQ) is a type of radial basis function

In general, these transformations are not derived fro%s) with R(|jx — xi[|) is defined as follows [74]

physical models, but instead model the deformation using R(||x — xi||) = /r2+d2 (28)
a set of basis functions. The coefficients are adjusted so ¢
that the combination of basis functions fit the displacemewherer; is the Euclidean distande—x;|, x is an interpolated
field (cf. interpolation). Much of the mathematical framewo point, andx; is the location of théth landmark. The parameter
arises from the theory of function interpolation [67] and controls the amount of smoothing, largéresults in more
approximation theory [68], [69]. In approximation theotty ismoothing. The inverse multiquadric (IMQ) is defined as the
is assumed that there is error in the samples, so the standaiprocal of (28):
interpolation requirement that the function intersectsgias 9 o1
is relaxed. As a result the approximating function is usuall R(llx = xl) = [ri + 4772 (29)
much smoother than its interpolating counterpart.
Polynomial functions might seem an intuitive choice, howe. Weighted mean
ever, global polynomials of degree larger than two can beThe WMN is defined byR(||x — x;||) = —idlx=xlD)
unstable [1, ch 8]. Radial basis functions and piecewise _ 2, Gilllx—xil])
polynomials (splines) are more stable and are widely usedh0osen such that;(|[x —x;||) is a monotonically de;:reas;ng
In general, these functions do not preserve the topolod§BF Such as a Gaussian or cubig(||x—x;|[) = 1-3d;+2d;

[|x—x||2

however, recent work [70], [71] has sought to design fumgtio Where di = (=", [84]. The weighted sum makes it an
that are diffeomorphisms, see section VI-C. approximating rather interpolating function. The width Bf

is tuned to the density of landmarks and the function becomes

interpolating ask decreases [84].
A. Radial basis functions P g [84]

Radial basis functions [72], [73], [74] are functions of th
distancel|x — x;|| between the interpolation poistand basis o )

D. Thin-plate splines

as follows: as aircraft wings [85]. Later it was applied to function [86]
N [87] and spatial [88], [89] interpolation. Grimson [90] and
Fx) = aiR(|[x — x|) (25) Terzopoulos [91] described the TPS function mathemaicall

i=1

as a variational Euler-Lagrange equation which minimises
where ¢ indexes the landmarks, e.g. landmark paiké,is the bending energy. Essentially the TPS is the solution of a
the total number of landmarks and are weights which are square LaplaciarvVu = ¢5(0,0) [92], [7]. Goshtasby [93]
determined by solving a set of linear equations. Examplapplied the TPS to the registration of remote sensing images
are the Gaussian [75] and the inverse multiquadric, IMQ [7&ookstein et al. [92] introduced it into the modelling shape
defined in (29). These functions asymptotically tend to zerdeformation in medical image analysis. According to [6]sit i
but have global support. RBFs are positive definite funatiothe most commonly used RBF.
which allows an optimal set of coefficients to be determimedi The TPS is applicable to multi-dimensional interpolation
closed-form. This is a particularly useful property fordamark problems and has useful smoothing properties. It is usually
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used with sets of homologous features, anatomical landnankeighting between the two terms, the transformation besome
which are typically manually located in the images. The TPSnoother as\ increases.

can be used even if the landmarks are irregularly spaceeénGiv

a set of corresponding sets of features, the spline coetfticie

can be determined by the method of least squares [94]. INnR-Wendlandy-function

D, the TPS has a logarithmic basis functiohlog(r), in 3-D

this simplifies tor [80]. So the TPS displacemeni(x) can Fornefett et al. [80] required a transformation functioatth
be determined as follows [8]: could be used to model brain deformation resulting from

neurosurgery. These deformations tend to be highly lcedlis

N . .
_ 2 . so standard RBFs such as TPS, MQ are unsuitable since they
u(x) = Ax+B+ I;F’ri log(r:) (30) are global supported. They formulated a number of criteria
‘; that the transformation function should fulfil for landmark
ux) = Ax+B+ IZFm (31) based brain registration:
i=1 (a) Locality: u should have compact support and the extent

where (30) and (31) refer to 2-D and 3-D space respectively. Of support region should be controllable.

The matricesA and B define a affine transformation ard (b) Solvability: Equation (27) describing the mapping of

is the identity matrix. Goshtasby [8] includes an additiona  landmark locations in the source image to the target

stiffness parametef in r; such thatr? = (z — z;)? + (y — image must be solvable. This amounts to the function

;)% +d?. The coefficients of the linear transformation defined  u being positive definite.

by A andB and the TPS coefficientsF;} are determined by (c) Preservation of topology: The transformation function

solving the set of linear equations at the locations of |azuks must be continuous and locally 1-to-1 and the determinant

in the source image; = u(x;). of the Jacobian of the transformation must be positive, i.e.
The TPS is a global supported function and so it cannot det(Vug) > 0 [100].

accurately model localised deformation. Furthermoreljenst (d) The numerical solution should be computationally effi-

have a global impact and also large deformations can lead to cient.

S|ngu|ar|t|es in the sets of equat|0ns that need to be SOlV?Hey selected th@(}dk function of Wendland [101] which is
which can result in the topology not being preserved. The|ocally supported RBF. Local support is desirable because
global extent also leads to high computational complexify also reduces complexity and speeds up optimisation. The
when large numbers of landmarks are used. Hence some, function is multivariate inR? and isC2* continuous, It
authors have improved its computational efficiency [95][9 has a similar shape to a Gaussian, but it has finite extent,
[97], [98]. furthermore it is smooth unlike a truncated Gaussian. Like
other RBFsy)4 j; is positive definite inR? and has a minimal
E. Approximating thin-plate splines polynomial degree of 4 | + 3k + 1 where|.] denotes the floor

Rohr et al. [79], [78] proposed an approximating rather thperator”.
interpolating TPS that is more robust to outliers which @ccu Bap(r) = Ik(l _ T)EL%JMH (34)
because of errors in feature (landmark) localisation. Inagudk ’
errors are considered as anisotropic and are measured U§igre

a quadratic approximation term. The registration funcaion L) { (1—r) 0<r<l

0 1<r (35)

Jx(u) consists of a landmark registration measure term and a
TPS term.J¢ (u) that regularises the transformation:

i J and I(f(r))* denotesk applications of the integral operator
== Z u(p:)]”S,, ai—u(pi)]+ A (w) (32)  I(f(r)) defined by:

yvherepi and q; der_wote Iandmarks_ in the source qnd target I(f(r))ﬁ/m of @)z r 30 (36)
images. The covariance matri&, is a 3 x 3 matrix and r

represents anisotropic landmark localisation errdrsefers ) _

to the dimension of the image and to the chosen deriva- They selecteds 1 = (1 — 7)%(4r + 1) because it provides
t|ve order of the functional. The terni (u) is defined by Smooth C? continuity with minimal degree and therefore

m

Jd (u) =S¢ g4 (uy) andJ4 (uy,) is defined as [99, p 30]: computational expense for 3-D image registration. Thelloca
, ) ity criteria (a) is satisfied by using a multiplicative scai
A= Y m! / ( 0" uy, ) Jx factora on the distance, such that,(r) = ¢(%). They
m ag!. . ag! oxt ... 0xy? demonstrated experimentally that for large>~ 1000 the

ar+...tag=m

(33) function resembled a TPS, whereas tor= 50 it was much
The J¢ (u) term defines the TPS and controls the smootRore spatially constrained. They proved thgl; satisfies the

ness of the transformation. Hence the minimisation of (32forementioned criteria (a) - (d).

results in a smooth transformation that approximates tke di

tance between the landmark sets. Thgarameter controls the “The floor operatof z| gives the largest integare Z not greater tham:
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G. Elastic body splines is limited physically such that < v < 0.5. They argue that

Davis et al. [102] proposed an elastic body spline (EBS) fecause the Gaussian asymptotically falls rapidly to near,z
landmark based registration. The EBS is the solution to tffe€ affine and elastic registration can be determined stghara

Navier-Cauchy PDE of linear elasticity (4). In general,ytheThiS results in a similar system of linear equations as ir2]10
assume a polynomial radially symmetric fofte) = cr2+1. They solve W coefficients using a Tikhonov regularisation

They considered(x) = cr and f(x) = ¢ wherer = [|x|| scheme [62]. In a continuation of this work, Worz et al. [L04
(Euclidean norm) and is a constant véctor. This gives arnave extended the method to deal with anisotropic landmark
elastic displacement field of the form: localisation errors.

N
u(x) = ;R(X ~Ppi)ei (37) H. Quantitative comparison of EBS and GEBS
wherep; is the location of theth of N target landmarks and  Kohlrausch et al. [103] created a simple brain model in
c; are the coefficients associated with the force. Essentialyhich the tumour can deform within a rigid cranium. The
this is a linear combination of translated basis functiorgymmetry of the model allows the Navier-Cauchy PDE to be
R, represented by & x 3 matrix. Consequently, the threesolved in a cylindrical coordinate system. They evaluated t
components of the PDE are coupled. They solve these thf@EBS model by comparing it and the EBS model, with forces
coupled equations using the Galerkin vector method, sde [48(x) = cr and f(x) = £, to an analytical model for both
This transforms the three coupled PDEs into three independe = 0 and v = 0.49. In all cases, they reported that GEBS
radially symmetric, biharmonic ones and results in theofgll outperformed EBS, in some cases by an order of magnitude.
ing solutions for forces(x) = cr andf(x) = < respectively: However, a disadvantage of the GEBS is that its computationa

complexity is several times larger than EBS.

R(x) = [(12(1—-v)—1)r’T —3xx"] (38)
R(x) = [81—-v)—1)rI— lxxT] (39)
r I. B-splines
A . o o
wherey = grsy IS the Poisson ratid is the3 x 3 identity B-splines were originally proposed for interpolation by

matrix andxx’ is an outer product. The coefficients of th(=S
force W = [ci ---cy|" are determined from the system,
of linear equationsW = K~'U whereK is a 3N x 3N
matrix of R(p; — p;) elements andU = [uf ---uk]” a

choenberg [105] in the 1940s. Since then they have been
pplied widely, they have been popular for interpolation
problems in signal processing since the 1990s [106], [107],
. _ ] [108]. More recently some authors [107], [109] have argued
vector of displacements. They solve T8 using singular that B-splines are optimal as approximating functions.sehe

value decomposition [62]. In comparison the volume Sp“r\?asis functions can be extended to multivariate ones using

(VS) and 3-D TPS can be written in ?h‘? form(x) =l . tensor products. The FFD is an example of this. The mapping
andR(x) = rl. So apart from the rnTuItlpI|cat|ve constants I notion @ : Q0 — Q is modelled using translations of a
(38) ."’F”d .(39)’ the terms including<™ can be considered asregularly spaced grid (lattice) of control poirtP; ; . } where
modifications to the VS and TPS so that they conform to the” /6., ... is the index of a control point éﬁdz is the

1
Navier-Cauchy physical model [102]. control point spacing in the direction. FFDs usually use com-
Kohlrausch et al. [103] argue that the force mofigt) = P P d ' y

. . act supported basis functions afdis expressed in terms of
cr?k*+1 in [102] does not decrease sufficiently fast and therg0 PP P

. _ cal coordinate$u, v, w) with w = 2/, —|z/d,].... Given a
fore models global rather than local deformations. Sogljsteset of univariate compact supported basis functiphsy ()}

they propose a Gaussian force mofiet) = —==-z¢ >*  of degreeN. The FFD mapping functio®(u, v,w) can be
hence they refer to it as GEBS. The Gaussian model has tiefined as [110]:
advantage that can be used to control the localisation of the
deformation. Following a similar approach to [102] theywho § V-V " o

. . I,N (U w'rn.N v wn.N w)P; L, j+m,k+n (41)
that a Gaussian force leads tx) = 15— =5 R(X)c, 1 is Zl=07m=07"=0 (WP (0 0 (0Pt g
the shear modulus andthe Poisson ratio, and the new basis

function has the form: FFDs have been applied in deformable models of the heart

[111]. It was soon recognised that B-spline basis functions

R(x) = [4(1-v)— 1)erf(72> had superior properties [112] and FFDs based on B-splines
. r were used for object modelling in 3-D [113] and 2-D [114],
B 2 e’ g erf(f‘)]I [110] and for animations [115]. Declerck [116] applied aubi

T 72 73 B-spline FFDs to register SPECT cardiac images using the

+

erf(7) 9 e gerf(?). iterative closest point of extracted surfaces as a regjistra
3 20 TA 30 Jxx metric. Rueckert et al. [117] also used this FFD in combonati
(40) with a voxel intensity similarity measure to register dyram
contrast enhanced MR breast images. The theory and meth-
wheres = % and erf(:c)é% f(f e~t"dt denotes the error ods for object modelling with polynomial and spline curves,
function. The Poisson ratio depends on the material andncluding B-splines is well developed, see [118], [119].

[ 73 r rd



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING 11

B-spline Interpolation:B(asis) splines are a type of minimal
support spline that was introduced by Schoenberg [105] for
interpolation. A B-spline basis function of degree zgkpis
a rect (step) function, the kernel used for nearest neighbou
interpolation. A degree one B-spline basis functiGp is
constructed by the self-convolution &, i.e. 5, = Gy * Bo.

A B-spline basis function of degre® is constructed from

N such convolutions, i.e8y = (g * ... * By (N times). The
support of B-spline basis functions depends on its degree we
denotep; ,, as a B-spline basis function of degtee that is r1 =1

applied to an interval defined by the knot point B-spline _ - .

basis functions of an arbitrary degree can be defined usmg faios thiesﬁﬁ,?é Ef,’r'igf” .C.O?;;Stmg of control poir¥o, -+, Po : that
Cox-de Boor recursion formula, see [118]:

1 ife;, <z < Tit1
Bio(x) = 0 herwi (42) . . ) . )
otherwise generalised this to volumes. The image domain is partione
into a lattice of rectangular sub-domains that are aligngd w
Bin(x) = T — T 5 (@) the image axis. They used globally supported Bernsteirsbasi
o T Ty functionsb,, , which resulted in the following FFD:
Titn — X
+ ﬁﬂﬂrl,n*l(‘fv) (43) I,m,n
il B ‘I’(l‘, Y, Z) = Z bi,l (x)bj,'rn (y)bk,n (Z)Pi,j,k (45)
B-splines can be used as either interpolators or approgitsiat i=0,j=0,k=0

Approximators do not intersect samples, but instead m'ErEimiI thi g denote th ber of trol points in th
an error metric such as thig, norm. When used as approxima-n IS case, m,n denote the number of control points in the

tors B-splines are said to provide an optimal tradeoff betweth“?e directions. The Bernstein polynomial basis functiare
a smooth function and a close fit to the data samples [10‘?ﬁf'ned by:
[108]. This property is useful because often it is desirable
to have a smooth fit to noisy sample points. To construct a bp,q(x) = ( a >=’Up(1 —z)P (46)
: : p
B-spline interpolator it is necessary to pre-filter the imag
with a high-boost filter. If this is ignored then there is tod hey suggested that other basis functions such as B-splines
much low-pass filtering. Unser [106] proposed using a shatiould be suitable. FFDs have advantages compared to previ-
domain recursive filter to pre-filter a discrete functionopri ous surface based methods. This is because the deformation
to B-spline interpolation. In summary, the discrete fumsti model is object-independent in the sense that it applieso 3
faz(j) with sample pointsj € Z and sample intervallz space and is independent of the object’s surface.
can be interpolated to a continuous functipn,(z) [67] as Hsu [112] argued that cubic B-splines had superior prop-
follows: erties compared to the Bernstein polynomials used in [121].
They provide both local control within a support region and
fau(@) =" facli) D (0™ Brm (44) " continuity when control points are moved - they joii?
jez ke smoothly at the knots. For cubic B-splines the support regio
The functionsy™,, (")} "B, are infinite impulse responsei_s four cqntrol pqints in (_aach direction. amn represents the
filters known as cardinal splines of degree ith B—_splme ba5|_s f_unctlon of degree_ Their FFD takes the
Curve fitting using de Boor control pointsA fundamental following form within the support region:
theorem of B-splines [105], [120] states that any splinecfun 3,3,3
ti(_Jn c_)f degreen, _S‘n(:c) can be r_epresented as a linear come (v, v, w) = Z B1.3(1) Brm.3(0) B3 (W) Pt it kin
bination of B-spline basis functions of the same degree over 1=0,m—0,n=0
the same partition i.eS, () = S°7°° __ ¢(k)Bkn(z). Curve ' (47)
fitting can be achieved using a set of de Boor control pointgth cubic B-spline basis functions:
{P;} that are joined to form a de Boor polygon, see Figure

1. The control points are adjusted so t8at(z € [z, z,]) = Boa(u) = (1-u)’/6
S Bin(z)P; fits the data samples. The number of control Bia(u) = (3u®—6u®+4)/6
points depends on the degree of splines and the number of Bos(u) = (—3u’®+3u®+3u+1)/6
knots. 3
6373(11) = U /6

Free-form deformations:FFDs are similar to the idea of
tensor products of univariate splines suggested by de Boor

[118, ch 17] for modelling surfaces. Sederberg and Parrg][12 Lee et al. [114], [110] proposed a multi-level cubic B-

5The notation3,, as in [67] is used rather thah, .1 to denote a B-spline spline FFD for landmark-based ma_tChing of 2-D imag_es. They
basis function of degree showed that a one-to-one mapping could be achieved by
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limiting the displacement of control points to less thanfhathe curl [, [[V(||V x u|])||dx of the displacement field.

the control point spacing. Their FFD had local form: They evaluated the accuracy of this approach using 2-D
3.3 electrophoresis images and simulated barrel and pincuishio
Z B1.3(1) B3 (V)P 1.5 4m (48) distortion. According to their results the convergence raias

faster when regularisation was used and faster still wheh bo

Th h ntrol point locations based on dvadi hegularisation and landmarks were used. However, there was
ney chose control po ocations based on dyadic Sufy comparison between their proposed method of regularisa-

division. They regularised their transformation by usincpat tion and the standard Laplacian one

function that was based on the TPS bending energy and an '

image energy terni, | V(I)|* , wherex denotes convolution \/4jiqation of Rueckert's B-spline FFD algorithm
andG, a Gaussian of standard deviatien

Gao and Sederberg [115] used a FFD to generate animati
with minimal human interaction. They chose a hierarchy
first order (linear) B-splineg; ; on a grid of2* x 2* control
pointsP; ;. Their FFD has the form:

1=0,m=0

nghe cubic B-spline FFD was compared to an affine model

r the registration dynamic contrast enhanced MR breast
images [117]. According to this when there was subject
motion, the FFD out-performed both the rigid or affine models
in terms of both the correlation of voxel intensities andueis

2k 2% assessment. In [28] the algorithm was evaluated by compar-
Z B () B, 1 () Pt j+m (49) ing atlas propagations of the cerebral lateral ventriclis w
1=0,m=0 manual segmentations. Here it was found that the algorithm
where was accurate enough to compare cohorts when there was a
& - T small deformation. In [124] a bio-mechanical model was used
2% — x; if 58 <o < 5 h .
_ & o 41 Tiio to generate deformations and these were compared with the
0 otherwise ones determined using the registration algorithm.

They used a regularisation strategy based on minimisingt cd. Piecewise affine

function C' = C; + aC, + BC; that incorporates rudimentary  Thjs js sometimes also termed block-matching, multiple
deformation energy termg’, and C, as well as colour or poly-affine registration. It is a relatively simple mogdel
image similarity C';. The Lagrange multipliers: and 5 are  the source image is divided into a number of rectangular
determined empirically. sub-images or blocks and these are individually registéved
Registration using B-splineRRueckert et al. [117] proposedipe target image. Typically an affine or rigid-body model is
using a cubic B-spline FFD with a voxel intensity similarity,sed. This approach invariably uses a voxel intensity siriyl
measure. The algorithm searched for the set of control pojfktric as a registration measure. This gives a uniformlgepa
displacements that minimised the cost functioil(x)) = gisplacement field. However, it has a particular problem in
S(4, B(T(x)))+AE(T(x)). WhereS(A, T(B)) is the image  that the displacement field is not necessarily continuowsiM
similarity measure and(T) is the TPS bending energy. Thegythors solve this by regularization, for instance, by lagp
Lagrange multiplierA controls the amount of regularisationsjitering. Another issue is the number of degrees of freedom
and was chosen empirically. Normalised mutual informatiqgy equivalently the size of the blocks. If there are too few

was used for similarity metric and'(T(x)) was minimised yoyxels in a block then there is insufficient information tovelr
using a gradient descent method. The FFD grids can be coggistration.

structed hierarchically so that deformations can be detsth  The original method is usually credited to Collins et al.
by multi-resolution, see [28]. [125]. They used it for brain segmentation, to determine the
Kybic et al. [30], [122] proposed cubic B-splines as @eometrical variability of brain structures across a papiah.

deformation model of the distortion in echo planar MR braifthe algorithm was named ANIMAL and was intended to
images [30] and and for the registration of MR, SPECT angk ysed for inter-subject brain registration. It assumes th
CT images of the brain and heart [122]. In a continuation @frain deformation can be modelled as a set of translations at
this work, Sorzano et al. [123] used cubic B-splines to modgdgylarly spaced nodes of a dense 3-D cubic lattice. It uses a
both image deformation and also to interpolate images.rThgjerarchical strategy in which the images are convolvedh wit

2-D transformation is defined as follows [122]: a Gaussian kernel and its first derivative. Large deformatio
nt oY are recovered first at coarse scales and then smaller ones at
u(x) = (I - —7 = — 51 ! . ) . . .
> ge:z o’ (h ) (h 7 &1 finer scales. The algorithm iteratively optimises a costfiam

consisting of a voxel similarity measure and a regulamsati
where 8" (x) = 35, ¢y 1y ("5+ —r2)8" 'z — §), hiS @ term. The similarity measure is based on normalised cross
multi-resolution scaling parameter amd = 3 for cubic B-  correlation (NCC). The regularisation terthis a function of
splines. They argued that a function regularisation ssatethe magnitude of the displacement of each vaxel) and the

based on a Laplacian or TPS bending energy is deficigffyHMm of the Gaussian convolution kerne,.,q., it has the
because only pure second order derivatives and not croggowing form:

terms of first order derivatives are considered. To overcome 2
this, they proposed a regularisation scheme based on two C(x) = Z # (52)
terms, the gradients of the divergenfg ||V(V.u)||dx and <X Uthaz — u(x)3
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wherec is a constant. A pre-segmented atlas is used for thee determined by the fast discrete wavelet transform ofatlal
target image. The subject images are registered to thishend [tL28] using Daubechies [129] compactly supported wavelets
transformation is inverted and used to propagate the seigmen Gefen [130], modelledi(x) in 3-D with a wavelet expan-
tion into the subject images. The algorithm was evaluated bion:

comparing displacements of 34 manually located landmarks N-1 8
from 3-D MR brain scans of: = 17 normal subjects [125]. CJk(I)Jk + cis, s, (56)
The average standard deviation of voxel displacementsein th kzo kz(:) Sz;]z;? d

three Cartesian directions was 4.2mm for the algorithm an

3.9mm for the manual method qwerecﬁf}k is determined from the tensor product of 1-D order

3 spline wavelet basis functions, cf. (54) andlenotes the
sub-band. In this approach the Navier-Cauchy PDE is solved
K. Wavelets by minimising the elastic energy functional separately for
In Fourier analysis, a functi@ris decomposed into a set ofeach component of the deformation field using the Levenberg-
sinusoidal basis functions. Sinusoidal functions arequlf Marquardt algorithm. Gefen compared the wavelet and TPS
localised in frequency, but completely unlocalised in gpacmodels for inter-subject registration of histology imagésat
In contrast, in wavelet analysis, basis functions are Isedl brains. The mean surface error of both methods decreaskd wit
in both the frequency and spatial domains [126]. Waveletise number of registration parameters. For the same nunfiber o
are implicitly designed for the multi-resolution analysi§ parameters, the wavelet method was about 10% more accurate
signals. A vector function sub-space bf(R) is constructed than the TPS, however it is substantially more computatipna
from a nested set of sub-spac®® C V'..., such that intensive. For the TPS, the number of parameters depends
Vitl = Vig W' where W* contains the additional detailon the number of corresponding points. However, for the
to generateV*!. V' and W* are respectively constructedwavelet method it depends on the number of voxels. The
from usually orthogonal sets of scaling,;} and wavelet wavelet method can therefore be applied at a finer scale, 2800
{%a,p} functions. Defined asp,;, = —Eqb(— — b) and parameters gave an accuracy of 2.39 voxels.
Yap = 2721(& — b). A 1-D function can be represented Wu et al. [131], [132] expressed the displacement field as a
as an expansion of translated and dilated scaling and wavelevelet expansion and determined the optimal set of wavelet
basis functions as follows: coefficients with a coarse-to-fine optimisation strategingis
the Levenberg-Marquardt algorithm. They required a smooth
flx) = Z <J(%);0ab > Pab solution and c%ose '?he wavelget function of Cai and Wang [133]

aember which are cubic spline basis functions that span a Sobolev
+ Y < f),Yap > Vap (53) rather thanL? space.
a€Z,beZ Piecewise affine with optical flow regularisatiortellier

Wavelets have an advantage over the Navier-Cauchy eigéh-al. [134] proposed a multi-resolution algorithm based on
functionsgy in (5) because they allow deformations with loca® piecewise affine transformation regularized with an @ptic
support to be modelled from a finite set of basis functionBow model. They used a quadratic form of optical flow,
Furthermore, they provide an implicit multi-resolutiorpre- defined by (23). They added a second regularisation term
sentation of the transformation. [[u(x) — u(xo)[|, wherex, is in v(x) a neighbourhood of,
Amit [127] considered registration as a variational prable to smooth the displacement field. The combined cost function
whereu(x) is obtained by minimising a cost function consistwas:
ing of the sum of square intensity differences and a smogthin

_ _ 2
term. Hereu(x) is modelled in 2-D by the wavelet expansion (w) = z;([u(x).Va(x) +a(x) = b(x)]
S s < (X)W, > 4 with basis functions that *< ,
are tensor products ab,, x and o, . + a0 lu(x) — u(xo)| (57)

xp€v(x):xeX

" kl = Oni(21)0n1(@2) They used a multi-resolution strategy to circumvent thelsma
Unet = Ok (21) 001 (w2) displacement limitation of optical flow. This consisted it
Vo 1 = Un k(1) i (22) a Gaussian image pyramid and a multi-grid method. The multi-
?/fn,k,z = P (@10 (22) (54) 9rid method involved partitioning the image into rectaragul

blocks. The displacement field for each block is estimated

The smoothing term is: using the robust M-estimator [135], [136], [137]. The M-
oo 2"—1 estimator [135] is a robust maximum likelihood estimator
ufo+ > > (1+42) Z u(x),vi ., >>  (55) that decreases the weighting of values at the tails of the
n=1k,1=0 distribution. It is typically used for iterative least sgesa

Whereugo =< u(x), 6o > With é.0 — 1, The optimal value Problems to reduces the impact of outliers. The transfdonat

e Sy ST : odel used depends on the number of voxels in the block. For

f is found by gradient descent and the inner roduc'i% : o .
of u(x) is fo ye P blocks with 12 or more voxels a full affine is estimated, for

6The function is assumed to be continuous, real-valued andreginte- ON€s with between 6 and 12 voxels a rigid-body and for those

grable L2 (R), i.e. ff"oo |f(x)]|?dz < oo less than 6 a simple translation is used. The multi-grid th
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is thought to have an advantage of being robust to MR intgnsiequired. This is mapping is related to the displacemen fiel
inhomogeneities which tend to be low spatial frequency. by ®(x,1) = x + u(x) and satisfies the following [142]:

9% (x, 1)

VI. CONSTRAINTS ON THE TRANSFORMATION ot = v(x,t) (59)
A. Inverse consistenc 0P (y,t -
_ v | 000~ ey vy (60
Christensen and Johnson [138], [139] used inverse con- .
sistency as regularization constraint. Inverse consigtean ®(x,0) = @ (x,0)=L (61)

be explained by considering the transformations obtained tphe function®(x,¢) describes a diffeomorphic flow through
registering imaged to B asT4p and the inverse one from space-time. The vectar is a location in the target image and
B to A asTpa. If the transformationsI'y5 and T4 are  the derivativeV®(y, t) is the Jacobian of the transformation.
consistent their composition is the identity. For almost ah numerical method for obtaining a diffeomorphism is given
registration algorithméT' 4z # Ty} So they introduced a in [147]. Joshi and Miller [70] describe how diffeomorphism
regularization constraint that penalises the inconsistem can be used for landmark matching. The optimal displacement
[138], they consider linear elastic registration as defibgd {3 is determined by integrating the optimal velocity over

the Navier-Cauchy PDE (4). The cost functichis a linear time, i.e. t(x fT x,t)dt. The optimal velocity is
combination of: image similarity’s;.,, the consistency of the determined by minimising two terms. The first term relates to
forward and backward transformation$.., and a regulari- the energy of the flow. The second term refers to the distance
sation term that is related to the energy of the deformatigfesidual) between the the landmarks in the target image
Creg- Csim = S(A,B(Tpa(x)) + S(A(Tap(x), B) the and the time dependent mappings of the landmarks in the

square difference similarity measure is used 0, B) = source imagg®(p;,t)}. This leads to the following equation

Jo lA(x) — B(x)]?dz. Ci.. is determined from the residualfor the velocityv:

between the forward and backward transformation(,g. =

Cice(A, B)+ Ciee(B, A) with Ci.. (A, B) = fxeﬂ[TAB( x) — v = argmin/ / ||Lv(x,t)||2dxdt + D(®(p,T)). (62)

T—IBA( )]dz. Creq relates to energy of the transformation

Creg = Creg(A,B) 4 Creg(B, A) Where Crey(A,B) = The differential operatof. is modelled on the Navier-Stokes
reg reg reg reg

[ Q|LTAB(X)|2dx. PDE (21) with incompressible flow i.éV.v = 0. Conse-

qguently, L is a diagonal operator and takes the fofiy) =
. —V?2 + ¢ where ¢ is a constant. The operatdr and its
B. Topology preservation boundary conditions are chosen so thatike matrix Green’s
The topology can be preserved by ensuring that two condimction G(x,y) is continuous inx andy and K(x,y) =
tions are fulfilled [140]: (a) the determinant of the Jacobid G (x,y)G(x,y)' is a positive definite operator. THe(.) term
the transformatiorny is always positive; (b) the transformationis given by:
is bijective. Continuity is implied by the existence &f N
Noblet et al. [141] proposed a method to ensure that 0 D(®(p,T)) = Z[qiﬂi(pi’T)]ngl[qrq)(pij)]. (63)
for a hierarchy of linear B-splines. For B-splines of degree
one, the displacement can be represented as a product ef trl]—fSreS
terms of the fornu, + b,v wherev is x or y or z. Expanding landm
the determinant of the derivative terms leads to an express
for J in terms ofz, y and z:

=1
n IS @3 x 3 covariance matrix that represents anisotropic
ark localisation errors. Theé minimiser can be rewrit-
len see [70], in the following form:

N

222:2 i)k (58) ZK (pi,1),%) Y_[C™1); s2(py.1)  (64)

J(x7yaz) = QG5 kT Y 2 j=1

i,5,k=(0,0,0)

(2m)8
Given a gradient descent optimisation method with steptrend¥ith K (x,y) a diagonal matrié 7= exp(— 7z |[x — y||)L, I
§ it is possible to express as a function of i.e. J(z,y,z,0) 'S the 3 x 3 identity matrix. Assumlng a normally distributed
in (58). In this way it is possible to limi§ so thatJ > 0. velocity field thenC is defined as &8N x 3N covariance

matrix with 3 x 3 sub-matrice<C;; = K(®(pi,t), ®(p;,1))-

C. Diffeomorphic transformations The time derivative of the optimal diffeomorphic mappitkg
for the rth landmark is glven by:

Miller et al. [142] proposed that the group of diffeomorphic
mappings, as proposed by Christensen et al. [57] for fluid floy _ ( 17 a
registration, were suitable to generate groups of comiouat B(p - argmm/ 21 @' (pit Jii ®(p;, t)dt
anatomies [143], [144], [145]. The problem with the fluid © D(@(p.T ); 7 (65)
flow algorithm [57] is that singularities can arise from the T
successive overrelaxation method used to solve the Navi€hey implement (64) by discretising time and determining
Stokes PDE [146]. These can be avoided by regularising ttee perturbation of landmark displacements over each time
velocity field [146]. To achieve this a diffeomorphic spacestep, for details see [70]. They use simple test examples to
time mapping®(x,t) wherex € Q andt € [0,1] is demonstrate thaf > 0 for their transformation.
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VIlI. COMPARATIVE EVALUATION OF NONRIGID differences because the local support property ensurds tha
TRANSFORMATIONS errors are not propagated globally. When there is a large

N _ _ _ ~_number of landmarks with localisation error the WMN method
~ A critical aspect in choosing a transformation model is ifyas preferred because (a) it does not require the solution of
impact on the accuracy of the nonrigid registration algponit gz system of equations that could be numerically unstable and

However, this error is difficult to evaluate for real—world(b) the averaging process when Ca|cu|ating the mean value
medical applications. This is because of the difficulty ifeduces noise effects.

obtaining ground truth transformations. A possible apphoa
is to use simulation, but this must be realistic to be valeabl
Furthermore, there are a wide range of potential applinatio
and for most of these the transformation model is not prcise Nonrigid registration has become an important tool in
known. An alternative approach is to measure the geometniedical image analysis. It can provide automated quainttat
error at corresponding landmark locations. A large numlber measurements for a large range of biological proceisseiso.
samples would be needed to give a representative estimatte ov In principle, physical models have the advantage of provid-
the entire image domain. Despite this, for many applicationing physically realistic solutions. However, some of thesg.
only the error at key structures is important so this apgroafinear elasticity can only accurately model small deforiora,
can be viable. A limitation here is the localisation error igvhich is a limitation because often soft tissue exhibitgdar
identifying landmarks. deformation. Fluid flow is more appropriate for this and
There is little published work on the comparative evaluatiocan ensure that the topology is preserved. However, it does
of nonrigid algorithms with different transformation mdsle not model the elastic component of tissue deformation and
Two recent studies have been been published by Hellier ceintains a solution space that cannot be realised in many
al. [148] and Zagorchev and Goshtasby [84]. There are néiasue deformation states. Also the solutions of the aasexti
projects such as NIREP [149] that aim to provide systemafRDEs are often highly computationally complex. In reality,
evaluation strategies. Hellier et al. [148] evaluated sethnds tissue exhibits a complex behaviour, only in certain caodg
for the inter-subject registration of MR brain images. Thesan it be considered as an elastic or visco-elastic material
consisted of rigid-body [150], [151] and nonrigid regisiba and it usually behaves anisotropically. It is expected that
algorithms and the proportional squaring method of Tathirabetter physical models should emerge as our understanding
[40] which requires manual input. The nonrigid algorithmsf continuum biomechanics advances [66].
were based on fluid flow [139], optical flow [64] and piecewise Basis function expansions do not, in general, describe the
affine [125] transformation models. They used a variety @hysical or biological processes that cause the geomktrica
metrics to evaluate error, both globally over the entiregma change. Instead they construct an interpolating or appraixi
domain and locally for certain key brain structures. Acéogd ing function to model it. Some basis functions are compactly
to the global criteria accuracy appeared to increase wigh teupported which allows highly localised deformation to be
number of degrees of freedom of the transformation. Alsmodelled. Compact support also has the advantage of reglucin
folding was noted for the optical flow algorithm [64]. Forcomplexity and speeds up optimisation. Generally, basis-fu
the local criteria there were mixed results and there was tion expansions are easier to solve computationally thaBsPD
significant difference between rigid and nonrigid algarith Radial basis functions are used for landmark-based ragistr
In conclusion, they recommended combining anatomical-lanibn. They simplify the multi-dimensional representatiof
marks with intensity-based registration to increase ammur the deformation. They provide fast closed-form solutidis.
Zagorchev and Goshtasby [84] compared four landmarpline and wavelet expansions are similar, but they do ret us
based methods (TPS, MQ, WMN and piecewise linear (PL)a)simplifying distance metric. Instead multi-dimensiobasis
in terms of accuracy and computational cost. The TPS, Mi@Qnctions are constructed from linear combinations of aniv
and WMN are globally supported RBFs while PL is locallyate ones. An optimal set of coefficients is typically deteveai
supported. The WMN is an approximating function whileising a variational approach. B-splines and wavelets have
the others are interpolating. The accuracy generally digubn desirable properties such as smoothness and can be coedtruc
on the size of the local geometrical differences between thierarchically. B-splines have less complexity than wetsl
images and the number and distribution of landmarks. Whand are smooth and compactly supported.
there were large local geometrical differences, WMN and PL It is always beneficial to use as much information as
were considered the most accurate. This was thought to figssible, so using additional landmarks should improve the
because: (a) when landmarks are irregularly spaced there agcuracy of a non-landmark based method, provided the
large errors for RBFs like TPS and MQ in image regionendmarks are accurately localised. It is possible to desig
with a low landmark density; (b) when the landmark spacingasis functions that satisfy physical models, e.g. [10R)3].
is highly variable the system of equations that needs to Bémilarly, preserving the topology or ensuring the transfo
solved for each component becomes ill-conditioned. Whenation is diffeomorphic are principled strategies and can b
there are small local geometrical differences and a small secorporated, for example as a regularization constraint.
of widely spread landmarks then TPS and MQ were preferredGenerally, there is a lack of evaluation studies of non-
because they are interpolating functions. Generally, Pk widgid algorithms with different transformation models. 1Go
the most suitable method for images with local geometricagquently, it is difficult to draw robust conclusions about

VIIl. CONCLUSION
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which methods are most accurate or best suited to a patticul@o]
application. New evaluation projects are being planned tha

can

address this. Evaluation could play an important role

in providing feedback when new continuum biomechanicapi]
models ofin-vivo soft-tissue deformation are proposed.
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