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Abstract
Purpose The optimal electrode trajectory is needed to assist
surgeons in planning Deep Brain Stimulation (DBS). A
method for image-based trajectory planning was developed
and tested.
Methods Rules governing the DBS surgical procedure were
defined with geometric constraints. A formal geometric
solver using multimodal brain images and a template built
from 15 brain MRI scans were used to identify a space of
possible solutions and select the optimal one. For valida-
tion, a retrospective study of 30 DBS electrode implantations
from 18 patients was performed. A trajectory was computed
in each case and compared with the trajectories of the elec-
trodes that were actually implanted.
Results Computed trajectories had an average difference of
6.45◦ compared with reference trajectories and achieved a
better overall score based on satisfaction of geometric con-
straints. Trajectories were computed in 2 min for each case.
Conclusion A rule-based solver using pre-operative MR
brain images can automatically compute relevant and accu-
rate patient-specific DBS electrode trajectories.
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Introduction

An increasing number of patients suffering from move-
ment disorders such as Parkinson’s disease or essential trem-
ors are treated by Deep Brain Stimulation (DBS) [8,7,25].
This intervention, discovered in the early 1990’s, consists
in implanting an electrode in deep brain structures in order
to stimulate a functional target with high-frequency electri-
cal impulses, causing reliefs of the disease symptoms. This
treatment has become very popular, as it is an adjustable and
reversible alternative to the ablation of functional targets.

The procedure of DBS involves several phases [6]. Phase
1, setup: A stereotactic frame is set on the patient’s head.
Phase 2, pre-operative planning: The neurosurgeon chooses
on pre-operative MR and CT images the best location for
target stimulation, as well as the optimal entry point and
direction (which we will often call trajectory or position in
this paper), which will be used to reach the target with the
electrode. In case of a bilateral implantation, both trajecto-
ries are planned during this phase. Phase 3, intervention and
preparation of access: A hole is drilled in the skull at the pre-
viously defined entry point, in order to have an access toward
the target. Phase 4, electrophysiological exploration: A test
electrode is inserted along the planned trajectory, varying the
depths of insertion with a micrometric precision. Sometimes,
other test electrodes are inserted 2 mm beside the central elec-
trode simultaneously or separately, to test nearby locations.
The clinical response to stimulation is evaluated, in order
to find the placement having the best benefits/side effects
ratio. Phase 5, permanent electrode placement: When the
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best location is found, a permanent electrode replaces the
test electrode in the brain. The permanent electrode is fixed
on the skull. In case of a bilateral implantation, Phases 3–5
are performed on the other side of the brain. Phase 6: The
permanent electrode is connected to a pulse generator surgi-
cally implanted below the clavicle. This generator then needs
to be programmed and adjusted.

This treatment is very efficient and brings a valuable qual-
ity of life to the patients, but it is also difficult to plan.
The planning time varies depending on the experience of
the physicians and the software tool that is used. This is
a crucial step where the decision-making process looks for
all available data (e.g., medical images and clinical scores),
information (e.g., clinical data) and knowledge (e.g., digital
atlases, books). In some centers, this process involves sev-
eral clinicians (e.g., neurosurgeons, neurologists, neuropsy-
chologists) and can take up to 1h 30 minutes to find a good
planning, half of the time to locate the target and the other
half to choose the direction of the electrode. The tedious and
long planning phase mainly relies on the study of the pre-
operative patient images (such as MRI and CT) and requires
many of manual operations. Even if the navigation software
provides assistance for the different operations, the regis-
tration of the images acquired with different modalities still
requires many of manual adjustments, the target needs to be
manually defined, and the standard placement proposed by
the software is rarely appropriate, forcing the neurosurgeon
to adjust it using a trial and error approach.

Some studies underlined the importance of the trajectory
and electrode location on possible clinical and neuropsycho-
logical side effects following surgery [40] and on the com-
plications such as hemorrhages which is the most common
[24], underlining the interest of planning safe trajectories.
The objective of the work presented in this paper is to pro-
vide the neurosurgeon with a planning tool able to assist
him/her in the decision-making process, by finding a safe
and optimal linear trajectory for the implantation of a DBS
electrode from given patients’ medical images.

Related and previous works

In DBS surgical planning, various approaches with different
purposes have been already proposed: (1) to help in finding
automatically the target [15,18], (2) to simulate the electric
field of the electrode stimulation and its propagation in the
surrounding tissues [12], and (3) more recently to automati-
cally compute safer trajectories of the surgical electrodes. In
this study, we focus on this last topic, for which we will detail
a few interesting works below. Some authors proposed inter-
esting attempts of automatic targeting methods, for various
kinds of surgeries. However, they also have some drawbacks
that we would like to overcome.

The first studies on automatic computations of optimal
linear trajectories for surgery planning were described for
thermal ablations of hepatic tumors [1–4,31,32,36]. Actu-
ally, from the computer science point of view, planning a
placement of thermal probes in the liver has many of similar-
ities with planning a placement of electrodes in the brain. The
action of computing an optimal trajectory is the same, only
the conditions of the “optimality” and the modeling of the
tools and effects change. Altrogge et al. [2] studied hepatic
RadioFrequency Ablation (RFA) needle placement: Authors
tried to fit a volume of effect to a target using numerical opti-
mization. They modeled the distribution of the temperature
by taking into account some surrounding vessels; however,
they did not take into account the presence of all other sur-
rounding organs and the possible intersection of the tool with
vital structures.

Robotically assisted interventions require accurate plan-
ning to be safe and successful. In 2003, Adhami et al. [1]
proposed an interesting method using a translation of the
qualitative and quantitative description of an intervention
in a mathematical structure that could be formally defined,
manipulated, and optimized. However, the authors confessed
a long computation time. The same year, Essert-Villard et al.
also set the foundations of an approach based on the formal-
ization of surgical constraints that could be solved to pro-
pose optimal trajectories for RFA [36]. The present study is
inspired from further works of this team [3,4] showing how
to combine several constraints. This approach has the advan-
tages of taking into account the whole anatomy of the patient
and to be fast enough for being used by the surgeons. The
computation times have recently been improved even more
with the works in collaboration with Seitel et al. [32]. More
recently, Schumann et al. [31] presented a similar approach
based on segmentation masks rather than polygonal repre-
sentations of the anatomical structures. They also used a
weighted combination of constraints. The authors reported a
total computation time of 6 s for determining suitable inser-
tion trajectories on a standard computer. However, an eval-
uation showing the clinical suitability of such a trajectory
planning system was not performed.

In image-guided neurosurgery, a number of authors pro-
posed planning methods. But most of the early planning tools
required many manual interventions [10,17,23,30,35]. More
recently, Shamir et al. [33] proposed an approach for plan-
ning trajectories in image-guided keyhole neurosurgery. Like
Schumann et al. [31], they worked directly on voxels of
the brain images and assigned risk values to them. In this
approach, only the risk criterion was taken into account.
Brunenberg et al. presented in [11] one of the works most
related to ours, as they focused on DBS electrodes place-
ment. However, authors restricted the search to a limited set
of possible entry points, avoiding possibly good trajectories
to be discovered. We prefer to let the software decide by
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itself possible entry points, in order to study all possible solu-
tions as long as they satisfy the rules of the intervention. We
would also like to keep in mind an idea of genericity, with
a constraint-based solver usable on any kind of linear trajec-
tory planning, and easy to adapt to the description of new
surgical rules with new constraints.

This paper presents a method for automatic computation
of DBS electrode trajectories, based on the resolution of geo-
metric constraints inspired from [3,4] and extending the pre-
liminary results presented in [16]. Our approach is based
on two types of data: pre-operative patient-specific images
and the rules specific to the intervention. We first detail in
section “Analysis of rules governing DBS planning,” the
approach we used to determine the surgical rules followed
by surgeons for DBS planning, and detail how we treated
them, either formalizing them into geometric constraints or
simply adjusting some parameters. Then, in section “Input
data,” we explain how we obtained the patient-specific data
from images. In section “Global strategy,” we expose our
approach and the formal solver we developed to solve geo-
metric constraints with image data. Section “Implementation
of geometric constraints” exposes the formalized constraints
we defined for DBS planning. Then, we present the exper-
iments including 3 different targets that are usually stimu-
lated: the subthalamic nucleus (STN), the globus pallidus
internus (GPi) [34], and the caudal part of the ventro-lateral
nuclei of the thalamus (VLc) (sometimes also called the ven-
tral intermediate nucleus of the thalamus or VIM) [20] and the
retrospective study on 30 implantations from 18 patients. We
compare the results of our automatic trajectory computation
with the reference trajectory segmented from post-operative
CT images.

Materials and methods

Analysis of rules governing DBS planning

When designing a method for automated computer-assisted
surgical planning, it is crucial to follow knowledge elicitation
approaches for understanding the surgical decision-making
process. For the computation of the DBS electrode trajec-
tory, we aimed at identifying implicit and explicit rules used
by neurosurgeons when selecting a best possible trajectory.
These rules were intended to be translated in a second step
into numerical constraints used by the solver to calculate the
trajectory.

From an initial study of the literature about DBS planning,
we designed a questionnaire that allowed us to gather the
surgeon’s knowledge on which the reasoning will be based.
During 3 interviews, we submitted the questionnaire individ-
ually to two neurosurgeons who participated in our study:

Fig. 1 The tip of the electrode has to be in the target. Here, the target is
the blue shape and the computed trajectory represented as a green line.
As explained in section “Input data,” the target we used is not the actual
anatomic structure, but a segmentation of the contacts of the reference
target. The yellow shape in the back is a part of the ventricles mesh

one of them with an experience of approximately 100 DBS
implantations and the other with about 200 implantations.

The questionnaire was intended to converge toward a set
of identified rules constituting the main concerns used for
planning in clinical routine. It contained a list of proposed
rules and asked whether they were relevant or not. The neuro-
surgeons also had the possibility to add extra rules that were
not mentioned. Additionally, we asked them to give weights
to the rules, according to the importance they see for each of
them. As expected, some of the proposed rules were set aside
by the surgeons while others were added, and they under-
lined the importance of some of the rules while lowering the
importance of others. Some of the rules were mentioned as
being mandatory to satisfy, whereas others could be seen as
preferences. For this last type of rules, we jointly defined a
weighting with both surgeons, which represented at best the
impression they had of their importance. Then, an average
of the proposed weightings has been computed for each rule
(which will be referred to as ki in the rest of the paper) and
used for our experiments.

After the questionnaire was filled, we debriefed with these
neurosurgeons to sum up the rules. The ones we chose and
their formalization or parameterization are presented below.

(1) Place the electrode into the target The first obvious
rule that was identified was that the electrode tip must
be in the target. This rule strongly restricts the space of
possible positions. Our solver expects the definition of
a target and has been natively designed to consider only
the 3D positions of the tool with the tip inside the target
(see Fig. 1). This rule must be satisfied.
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Fig. 2 Initial insertion zone: upper surface of the skull’s skin mesh.
This mesh is used as a basis to determine the possible solutions. As
explained in section “Input data,” this mesh is built from a mono-subject
anatomical template made from 15 3T MR acquisitions and adapted to
each specific patient’s pre-operative MRI (background) with an affine
registration

Fig. 3 The path length is the distance between the candidate entry
point and the tip of the electrode, here represented by its trajectory
(green line). The tip is located inside the mesh of the target

(2) Position of the insertion point The insertion point on
the head has to be located in the upper surface of the skin
of the head, as the surgeon will never implant the elec-
trode through the lower parts of the head. This is not
only due to accessibility reasons but also to esthetics
reasons. We provide our solver with an initial insertion
zone corresponding to the scalp of the head (see Fig. 2):
This mesh will often be referred to as skin mesh or ini-
tial insertion zone in the rest of the paper. This rule must
be satisfied.

(3) Path length restriction This rule concerns the maximal
length of the path (see Fig. 3), which restricts the field
of research. According to neurosurgeons’ instructions,
we formalized this rule by assuming that the path has
to be shorter than 90 mm. In practice, this rule mainly

Fig. 4 The trajectory has to avoid ventricles (here in yellow) and the
cortical sulci. Here, the cortical sulci are represented by a set of meshes
located at their external traces (white intricate mesh)

allows us to eliminate implicitly the half of the head,
which is opposite to the side of the target as possible
locations of insertion. This rule must be satisfied.

(4) Avoid risky structures We need to find an electrode
placement that avoids crossing vital or risky structures.
For DBS, the identified “obstacle” structures include the
ventricles and the vessels. Vessels are numerous in the
brain and generally located in cortical sulci. Unfortu-
nately, they are often invisible when images are acquired
without contrast agent or angiography. So the neurosur-
geons usually rely on the anatomical location of the sulci
and avoid trajectories passing through them. We chose
to add the avoidance of cortical sulci as a proper rule
(see ventricles and sulci on Fig. 4). We formalized this
by assuming that the insertion point in the skull of the
patient has to be visible from the target, without any
occlusion by one of the cerebral structures considered
as obstacles. This rule must be satisfied.

(5) Minimize the path length Even if we are sure that the
path is shorter than the maximum length defined by rule
#3, minimizing the length of the path as much as possi-
ble reduces the risks of an imprecision when performing
the implantation. We formalized this rule by assuming
that the proportion between the length of the path and
the shortest distance between target and the skin mesh
(defined in rule #2) has to be minimal. This rule is a
preference, so it cannot be merged with rule #3 because
their natures are different. Let us note however that this
rule is not always mentioned by surgeons, so it has been
given a low weighting.

(6) Maximize the distance between electrode and risky
structures Even if we are sure that the electrode will
not cross any risky structure thanks to rule #4, it is less
risky if the trajectory passes as far as possible from those
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structures. We formalized this rule by assuming that
the distance between the electrode and the structures
designated as risky has to be maximized. The distance
between the electrode and a structure is the distance
between the candidate trajectory and the closest point
of the mesh representing the structure. This rule is a
preference.

(7) Optimize the orientation of the electrode depending
on target shape Another rule expressed by surgeons
was to have the trajectory axis as close as possible to
the main axis of the target, when the target is oblong (see
Fig. 1). This way, they can try several possible depths
by simply pulling the electrode in or out to cover almost
all of the target without needing another insertion at a
different location. We formalized this rule by assuming
that the angle between the axis of the electrode and the
main axis of the target has to be minimized. This rule
is a preference.

(8) Placing the tip as close as possible to the center of
the target Once again, even if we are sure that the tip
of the electrode will be placed inside the target thanks
to rule #1, we would like to have the tip as close as pos-
sible to the center of the target. We formalized this rule
by assuming that the distance between the tip and the
center should be minimized. This rule is a preference.

Input data

Our algorithm uses a set of spatially defined objects, such
as: an initial insertion zone, the target, and all structures
that come into play in the constraints as obstacles or risky
structures. They need to share the same reference coordi-
nate system so we chose to use the patient’s pre-operative
MRI coordinate system. In this section, we describe how we
obtained the data.

The images were acquired with the same image acquisi-
tion protocols (see Fig. 5): one pre-operative 3T T1-weighted
MR (1 mm × 1 mm × 1 mm, Philips Medical Systems), one
pre- and one post-operative CT scans (0.44 mm×0.44 mm×
0.6 mm for post-operative acquisitions and 0.5 mm ×
0.5 mm×0.6 mm for pre-operative acquisitions, GE Health-
care VCT 64). The MRI and the pre-operative CT were
acquired just before the intervention, and the post-operative
CT was acquired a few days after; however, we did not use
the pre-operative CT in our study. MRI and post-operative
CT images were first subjected to a series of fully automatic
processes (numbered ➀ on Fig. 5). They were denoised with
a non-local means algorithm [14]. A bias correction algo-
rithm based on intensity values [28] was applied on MR
images. Then, CT images were rigidly registered (cost func-
tion : Mutual Information) to pre-operative MR images using
Newuoa optimization [37].

Fig. 5 Graph of input data. Three images sources (left, in white) and
four different treatments (➀, ➁, ➂, ➃) were used to obtain the recon-
structed anatomical structures (in medium green). Intermediate steps
produce registered images (in dark pink) and template structures (in
light blue). In the lower part of the graph, the 2 parts with the gray back-
grounds correspond to the treatments and structures required, respec-
tively, if the system is used in clinical routine or for the validation
process. For the experiments described in this paper, we used the “val-
idation-only” part

From these co-registered images, we extracted anatomi-
cal structures either with semi-automatic segmentation using
MITK (Medical Imaging Interaction ToolKit [27] developed
by the DKFZ (German Cancer Research Center in Heidel-
berg)): operations numbered ➁ on Fig. 5 or thanks to an
automatic process: numbered ➂ on the figure. The brain was
segmented from pre-operative MRI thanks to an extraction
approach [29] from BrainVISA image processing software
platform [13]. From this initial segmentation, the cortical
sulci were automatically segmented using an algorithm based
on curvature information [22].

In this study, we focused on the computation of the tra-
jectory to reach a target and not on the delineation of the
target. Our goal was to compare our proposition with ref-
erence trajectories. To this end, we needed to use the exact
same target position as the one actually performed during the
intervention so that the comparisons would not be disturbed
by possible errors of locations of the target. For this pur-
pose, we segmented the contacts of the electrode (that appear
as bright in the post-operative CT) as a small oblong 3D
mesh and used this mesh as the target (as seen in Fig. 1, blue
shape), instead of segmenting the actual target. This is rep-
resented by the lower gray “validation-only” part of Fig. 5,
with the “segmented reference target”. In clinical routine,
the neurosurgeon simply marks the location of the target in
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the planning software, sometimes assisted by an atlas—this
is illustrated in Fig. 5 by the “clinical routine-only” gray
part, with the so-called “marked target”. Additionally, we
segmented the reference electrode from post-operative CT
for validation purposes.

We then computed 3D meshes from the segmented vol-
umes using the Marching Cubes approach [26].

We applied a particular process to one of the anatomi-
cal structures: We manually segmented the initial insertion
zone (skin) once for all on a mono-subject anatomical tem-
plate made from 15 3T MR acquisitions at high resolution
(0.25 mm × 0.25 mm × 0.25 mm) [21]. This zone does not
include the entire surface of the skin surrounding the skull
but it covers the usual location of the hair to take into account
esthetics. An additional process was applied to the 3D mesh
of this surface: We homogenized the sizes and angles of the
triangles of the mesh thanks to an isotropic remeshing algo-
rithm described in [9]. As we will explain later, this mesh
is used as a base for the 3D mesh of the solution space and
subdivided on the borders, so an homogeneous mesh is advis-
able. Then, thanks to an affine registration [19], this surface
mesh was automatically adapted to each studied patient’s
MRI (operation numbered ➃, see also Fig. 2), sparing us a
systematic manual segmentation.

As all 3D structures were either obtained from pre-
operative MRI, or obtained from a CT that was registered to
pre-operative MRI, or obtained from an MRI template and
then registered to pre-operative MRI, anatomical structures
and objects were defined in the same common space.

Global strategy

Our strategy consists in formalizing the rules described in
Section “Analysis of rules governing DBS planning” into
geometric constraints in order to solve them with a con-
straints solver. Among those constraints, some are boolean
(#1, #2, #3, #4): They are rules that must be satisfied. Others
are numerical (#5, #6, #7, #8) and were mentioned earlier as
preferences. The first ones are called strict constraints and
define the space of all possible solutions. The second ones are
soft constraints that need to be optimized at best, according
to weighting factors ki defined by the surgeon that represent
the importance of each particular soft constraint in relation to
the others. Among the space of possible solutions, the opti-
mal path will be the one that satisfies the soft constraints at
best. Let us note that constraints #1 and #2 are not solved but
included as input image data in our solver (as target and skin
meshes). The two other strict constraints and four soft con-
straints are translated into geometric constraints as explained
in section “Implementation of geometric constraints”.

When programming our solver, we gave a great impor-
tance to the genericity in our approach, our goal being to
dispose of a generic solver able to be used for any surgical

intervention involving a path planning for a rectilinear tool.
Therefore, our solver takes as input data not only the images
and segmented cerebral structures, but also the rules of the
intervention written in a specifically defined meta-language
and written in a separate XML (Extensible Markup Lan-
guage) file which is loaded when the software is launched. If
we want to add an extra constraint, we only have to write it
in this file.

A solution is constituted by a position in the 3D space for
the electrode. It can be represented indifferently either by
a point (i.e., the tip of the electrode) and a direction or by
two points. We chose to use the second alternative that was
more intuitive, using the tip and the insertion point on the
skin. For the insertion point, we start with an initial solution
space constituted by the mesh of the initial insertion zone
representing the upper part of the scalp. For the tip point, we
start with the whole target.

The solving process is performed in two steps. The first
phase consists in reducing the initial insertion zone by elimi-
nating the triangles of the polygonal mesh that do not satisfy
the totality of the strict constraints. Triangles of the mesh that
satisfy only partially the strict constraints are subdivided into
4 subtriangles thanks to a simple quadrisection operator, in
an iterative process, such as in [5]. The second phase con-
sists in a numerical optimization of the soft constraints. Each
soft constraint corresponds to a cost function to minimize.
In order to take into account all constraints with a weight-
ing factor defined by the expert, we chose to combine them
into an aggregative cost function. After an initialization of
the process, consisting in a rough evaluation of the values at
some insertion points homogeneously spread over the zone of
possible insertion points, we compute some connected com-
ponents around the best candidate points, and we start an
optimization using Nelder–Mead optimization method from
the best candidate. This way we avoided to fall into local
minima, as described in a previous paper [3].

Implementation of geometric constraints

Using the meta-language, the rules (or their corresponding
cost functions) are translated into geometric constraints rep-
resented as terms, combining operators and known data,
according to a geometric universe. The geometric universe
we defined for our constants and unknowns includes the usual
types (e.g., integers, real numbers, booleans) and composed
types such as point, tool, shape, or solution. We also defined
operators: usual operators such as plus, minus, multiply, and,
or, as well as complex operators as for instance distMin, dist-
ToolOrgan, angle, visible. In order to add an extra constraint
in the XML file, the necessary operators must have already
been defined. The terms can be seen as trees, which are solved
using a depth-first approach.
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Fig. 6 Different representations of Rule #7. a The tree shows how the
term formalizing the rule is built, using operators (in pink), constants (in
blue), and the variable (in green). b The scheme illustrates in a simple
way the aim of rule #7: minimization of the angle between the candi-
date trajectory and the main axis of a target which has an oblong shape.
Figure reprinted from [16]

Strict constraints

The rules corresponding to strict constraints are either
natively satisfied if they are implicit rules (Rules #1 and #2,
which are integrated under the form of input image data tar-
get and skin meshes), or transcribed as boolean terms, i.e.,
using boolean operators (Rules #3 and #4).

Soft constraints

The rules corresponding to soft constraints are translated into
cost functions to minimize, then written under the form of
terms using the available operators.

As an example of soft constraint, let us analyze Rule #7.
This rule aims at optimizing the orientation of the electrode
according to the shape of the target (as shown in Fig. 6b).
It is translated into a soft geometric constraint, expressing
that the angle between the trajectory of the electrode and
the main axis of the target has to be minimal. It is com-
puted by the minimization of a numerical cost function fori :
R

5 → [0, 1]. This function applies the geometric opera-
tors angle (computing the angle between two directions) and
main Axis (computing the main axis of a 3D shape thanks to
a PCA (Principal Component Analysis) of its vertices) to the
unknown X and the given mesh target . The cost function is
chosen in a way that the resulting values are between 0 and
1, in order to obtain an order of magnitude comparable to
the cost functions of the other rules before combining them.

Without this normalization, a rough combination of these
functions would be meaningless. So we transform the formal-
ization by saying that the ratio between the angle expressed
in degrees and 90 has to be minimal. This way, fori tends to
0 if the angle is close to 0 and to 1 if the angle is close to
90◦. Function fori is then defined by cost function (1). In this
equation, X represents the degrees of freedom in R

5 of the
trajectory of the tool.

fori(X) = angle(X, main Axis(target))

90
(1)

To express this function as a constraint understandable
by our solver, we use our meta-language and write it as a
term. This term uses existing operators defined in the solver
(divide, angle, mainAxis), constant data (target shape com-
ing from the images, integer 90), and the variable toolTra-
jectory, which will be filled with a candidate value. The final
constraint in XML syntax is shown in Table 1 line (3). The
corresponding tree is illustrated in Fig. 6a: operators are in
red, given constant data are in blue, and the variable is in
green. In the solver, we use this tree structure to represent
the constraints. If a data or variable node is used in more
than one constraint, it exists only once and does not have to
be re-evaluated several times.

Aggregative soft constraint

The constraints we detailed in section “Analysis of rules gov-
erning DBS planning” were all written in XML syntax with
the same approach, using our operators and data, and are
shown in Table 1. The last soft constraint (“sc_final,” line
(4)) is the aggregative constraint, which combines the four
previously defined soft constraints with the chosen weight-
ing factors ki . It corresponds to the XML transcription of
the aggregative cost function f , written line (2), which com-
bines the cost functions fdepth, fcenter, frisk, fori, associated
with the four soft constraints #5 (depth), #6 (risk), #7 (orien-
tation), and #8 (centering), respectively.

f (X) = kd . fdepth(X) + kr . frisk(X)

+ ko. fori(X) + kc. fcenter(X) (2)

The software

To apply our method, we developed our own geometric
constraints solver. It is developed in C++ based on MITK
software system [39] and using ITK and VTK libraries. It
includes a parser to read the XML constraint file and to build
the constraints tree. It also includes a set of operators on 3D
meshes such as subdivision of triangles by quadrisection,
and computations of the volume, or the distance to a line or
a point.
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Table 1 Strict and soft constraints in XML formalization

Strict constraints

<strict_constraint name=“path length restriction” impact=“insertionZone”>

lower( distMin ( center(target), insertionPoint ), maxPathLength )

</strict_constraint>

<strict_constraint name=“avoiding risky structures restriction” impact=“insertionZone”>

visible( insertionZone, targetVolume )

</strict_constraint>

Soft constraints

<soft_constraint name=“minimize depth” label=“sc_depth”>

divide( minus( distMin(toolTip, insertionPoint), distTargetSkull ),

minus(maxPathLength, distTargetSkull) )

</soft_constraint>

<soft_constraint name=“minimize risk” label=“sc_risk”>

max( divide( minus( 10.0 , distMin (sulci, toolTrajectory) ), 10.0 ), 0 )

</soft_constraint>

<soft_constraint name=“optimized orientation” label=“sc_ori”>

divide( angle ( toolTrajectory, mainAxis (target) ), 90.0 ) (3)
</soft_constraint>

<soft_constraint name=“centering” label=“sc_center”>

divide( distmin ( toolTip, center (target) ), 10.0 )

</soft_constraint>

<soft_constraint name=“final constraint” label=“sc_final”>

plus( mult(weight_sc_depth, sc_depth), mult(weight_sc_risk, sc_risk),

mult(weight_sc_ori, sc_ori), mult(weight_sc_center, sc_center) ) (4)
</soft_constraint>

To compute the non-intersection between the trajectory
and the 3D meshes of the organs to preserve, we introduced a
specific operator called “visible”. Even with spatial partition
algorithm accelerating the computations, a naive ray/mesh
intersection computation would still have been too time con-
suming. We chose to take advantage of the GPU (Graphics
Processing Unit) by performing renderings from the target’s
point of view in the six possible directions covering the whole
3D space (right / left / front / back / up / down). This is illus-
trated with a 2D projection in Fig. 7 showing only four of
the views (right / left / front / back). On this example, only
seven beams reach the initial insertion zone without hitting
any obstacle (such as ventricles or cortical sulci). View 4 is
totally occluded by the ventricles. We compute occlusions
of the initial insertion zone thanks to the OpenGL extension
GL_ARB_occlusion_query. Each triangle of the initial inser-
tion zone which is not rendered because it is occluded by an
organ is eliminated from the solution space. Triangles partly
visible can be subdivided up to a fixed threshold. This algo-
rithm has recently been improved in speed thanks to works
with DKFZ Heidelberg (MITK) [32], making the occlusion
computation quite instantaneous (below 1 s).

Fig. 7 Scheme in 2D illustrating the six 3D renderings used to com-
pute parts of the initial insertion zone not occluded by any obstacle
mesh (ventricles, sulci). Here, only 4 views from the target (red point)
are represented: front/back/right/left. Up/down views are not shown
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Fig. 8 Snapshot of our software, showing the interface allowing to
modify the settings, to change the color map to display, and to browse
the proposed optimal trajectories if several are found

Our software finally includes a graphical interface, which
allows to visualize the results and to modify interactively
some of the parameters. The results are shown under the
form of a global color map representing the values of cost
function f at each point of the insertion zone. The color map
pictures the insertion points having the best results for f in
green, those giving the worst results in red, and a range of
progressive intermediate colors for the other points. Among
the zones of best results, the optimal trajectory (i.e., passing
through the point of minimal f ) is shown as a red line. Let
us note that in some cases there can be several trajectories
considered as optimal, each one in a different “valley”. This
can be configured by adjusting a parameter, choosing either
an ε defining a range of acceptable values around the best
value of f or a number of first best trajectories to display.
In that case, the user can browse the proposed alternative
trajectories by simply clicking on a spin button.

If the user wants to see the results provided by another
choice of weighting factors, it is possible to modify them
using the corresponding sliders (as illustrated in Fig. 8). The
software recalculates the global color map and the optimal
trajectory and updates the view instantaneously. Indeed, the
four color maps of the individual soft constraints (represent-
ing, respectively, the values of fdepth, fcenter, frisk, and fori)
are computed once for all and do not change if the weight-
ing factors are modified. When the weighting factors change,
only the simple aggregative cost function needs to be recom-
puted and this is instantaneous. The user can also consult the
four color maps corresponding to the individual soft con-
straints, by selecting which map to visualize in a list.

Validation method

We performed a retrospective validation study of our method.
For each case, we compared our solution with the actual posi-
tion of the electrode that has been implanted in the patient,
used as the reference trajectory. We worked on the assump-
tion that the actual electrode was placed at best by the sur-

geons to fit simultaneously all the criteria, so our objective
was to check whether the solution we found automatically
was close to this reference or even a better solution regarding
the criteria. That is why we measured the proximity of our
computed trajectory with the reference trajectory, as well as
the scores of both trajectories.

For each case, we computed the angle between our
proposed optimal electrode trajectory and the reference
trajectory. Let us recall that the reference electrode was
segmented from post-operative CT, as explained in Sec-
tion “Input data” and illustrated in Fig. 5 in the “validation-
only” part. From this segmented electrode, we extracted its
main direction by performing a PCA, to obtain a line we
called “reference trajectory”. For both trajectories (computed
and reference), we also computed the minimal distance to the
sulci and compared the results. Finally, we reported the scores
of both trajectories for all of the individual soft constraints
and the aggregative soft constraint, i.e., the result of their
respective cost functions, in order to quantify their quality
regarding the rules defined by the neurosurgeons.

The experimentations were performed on images from
the Department of Neurosurgery at Pontchaillou University
Hospital in Rennes, France. We decided to retrospectively
validate our software with DBS interventions targeting dif-
ferent anatomical structures in the brain: the globus pallidus
interna (GPi), the subthalamic nucleus (STN), and the caudal
part of the ventro-lateral nuclei of the thalamus (VLc). The
two first ones are the most common sites for the placement of
the lead in case of dystonia and Parkinson’s disease, and the
third one is more often used for non-Parkinsonian essential
tremor. These targets are between 5 and 10 mm wide. Differ-
ent types of electrodes were used, depending on the target:
Medtronic 3389 when targeting the STN and Medtronic 3387
for GPi and VLc. The contacts are more spaced on electrode
Medtronic 3387; however, this has no incidence on the plan-
ning. Our method can be used with any of these electrodes
or others, as the important issue is the path toward the target
that we model as a line.

Our retrospective study was performed on 30 cases, consti-
tuted by 18 patients, some of which had a bilateral electrode
implantation. We treated each side as a separate case for our
study. Among those patients, there were 8 GPi targetings (14
electrodes), 6 STN (11 electrodes), and 4 VLc (5 electrodes).
For each case, we performed the registrations, segmentations,
and reconstructions described in section “Input data” on pre-
operative and post-operative images, and we obtained the
necessary 3D meshes of the structures and the targets. Then,
we launched the automatic planning application, using the
constraints defined in section “Analysis of rules governing
DBS planning,” and for a start, we chose weighting factors
of 1 for kd (soft constraint #5), 1 for kc (soft constraint #8),
4 for kr (#6), and 4 for ko (#7) to compute f . The weighting
factors were defined in collaboration with the neurosurgeons.
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Fig. 9 3D mesh of the solution space resulting from the solving of
strict constraints during phase 1 of the process for case #3. The initial
insertion zone (skin mesh) has been reduced to the surface of points
that satisfy the strict constraints

Results

The first step of our method computes a solution space, i.e.,
the surface where the insertion point can be located according
to the soft constraints. An example of solution space can be
seen in Fig. 9 representing patient case #3. Then, the second
step computes color maps on the solution space, to represent
the quality of the different possible locations in relation to
the soft constraints. Snapshots of color maps for patient case
#3 are shown in Fig. 11, where red parts represent the worst
insertion locations, green parts represent the best insertion
locations, with a range of intermediate colors. Figure 11a, b,
and c show, respectively, the individual color maps for con-
straints #5 (length of path) representing values of fdepth, #6
(distance to sulci) representing values of frisk, #7 (orienta-
tion) representing values of fori. A detail of the risk map is
shown in Fig. 10: The direction of the sight is so close to a
cortical sulcus that it does not cross the surface of possible
entry points and we can see the target. On the sides of the
cortical sulci, the areas of the surface of possible entry points
are red on the borders, showing a risky proximity with the
nearby cortical sulci. The color map for constraint #8 (“‘tip
close to center of the target”’) is not shown as it offers little
interest: It is mainly green and is only useful for adjustment.
Figure 11d shows the color map resulting in the aggregative
soft constraint combining the others. The red line represents
the optimal trajectory.

Let us call Tplan this optimal trajectory produced by our
path planning algorithm, Tref the reference trajectory of the
electrode segmented from the post-operative CT, and α the
angle between them. Angle α assumes a same origin for
both trajectories which are coplanar: α is measured along
this common plane. Results are shown in Table 2, along with

Fig. 10 Detail of the risk map (in red/orange/yellow). The target is in
blue, the cortical sulci in white, the pink shape in the back is a part of the
ventricles, and the background is the grayscale MRI. The direction of
the sight is so close to a cortical sulcus that it does not cross the surface
of possible entry points and we can see the target. On the sides of the
cortical sulci, the areas of the surface of possible entry points are red on
the borders, showing a risky proximity with the nearby cortical sulci.
Figure reprinted from [16]

the global score (i.e., the value of f ) of each trajectory Tplan

and Tref and the minimal distance to sulci. As explained in
section “Implementation of geometric constraints,” the val-
ues of f are real numbers between 0 and 1 (0 being the best
score and 1 the worst). They are the result of a minimization,
and their proximity with zero represents in some way the
degree of satisfaction of the weighted soft constraints. We
can notice that in all cases Tplan has a better (smaller) global
score than Tref . The scores are improved by an average of
47.69%. Let us notice that in some cases such as case #4, the
score of reference trajectory Tref is 1.000: Its minimal dis-
tance to the sulci is so small that it received a disqualifying
score.

In this table, we can also see that in all cases our trajectory
improves the distance to the sulci, which is increased by an
average of 4.342 mm, signifying a less risky path. Angle α

between Tref and Tplan has an average of 11.11◦, which is a
good result but not entirely satisfactory if our aim is to be as
close as possible to the reference trajectory.

Execution times are also shown in this table. The com-
putation of the solution space (surface of possible insertion)
takes about 6.6 s. Then, coloring the maps takes an aver-
age of 103 s. The final optimization of the optimal trajectory
takes less than 30 s. At the end, the entire process takes a
little more than 2 min (average of 138.36 s). The experiments
were performed on a 15” laptop, with a Dual Core CPU at
2.26 GHz and 4 GB RAM, equipped with a NVIDIA GeForce
Go 9300M GS GPU which is used to speed up occlusion
computation.
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Fig. 11 Color maps of the soft constraints obtained after phase 2 of the
solving process: Best zones are in green and worst are in red (patient
case #3). In all snapshots, the red line is the final trajectory Tplan,

optimizing the aggregative soft constraint a Length of path (constraint
#5); b Distance to sulci (constraint #6); c Orientation (constraint #7);
d Aggregative: kd = 1, kc = 1, kr = 4, ko = 4

In order to test the importance of the weighting factors, we
performed again the experimentation with alternative factors.
We chose to give more importance to the orientation of the
trajectory by giving a factor of 10 to ko (leaving the others
unchanged). The results of this second experimentation are
shown in Table 3. On this table, we compare the new tra-
jectory Tplan2 with the previous trajectory Tplan (which we
renamed for the occasion Tplan1). The scores are improved,
except for patient cases #4, #10, and #17, where the scores
are nearly equal. The important observation here is that the
angle between the reference trajectory and the computed tra-
jectory is significantly improved: Trajectory Tplan2 is nearly
30% closer from Tref than Tplan1. The improvement reaches
up to 84%. Figure 12 illustrates an example of the proximity
between our computed trajectory (Tplan, in red) and the refer-
ence trajectory (Tref , in green). In the same time, the distance
to sulci is smaller, which can be more critical. However, it is
still greater than for the reference electrode, and the loss is
only of about 1 mm which is quite small. So such weightings
could also be considered. The setting of the weighting factors
will be discussed in the next section.

Figure 13 shows a snapshot of the color map of the global
aggregative soft constraint with the second set of weight-

ing factors. Again, on this figure, the trajectory computed as
optimal Tplan using the new weighting factors is shown as
a red line. We can observe that the repartition of colors is
different from Fig. 11d: The new weighting factors favoured
orientation over distance to sulci, and we see that there is
less yellow around green zones in the upper right part and
inside red zones in the lower left part. The green zone is more
homogeneous and focused on the upper right part.

Figure 10 shows a detail of the color map of the risk con-
straint. The map stops where a trajectory toward the target
(in blue) would meet an obstacle: here, an approximation of a
sulcal vessel represented by the white shape. This is resulting
from the solving of strict constraint during phase 1. Along
the borders, the map tends to be red, signifying the risk of
passing too close. This is computed during the solving of soft
constraints at phase 2.

Discussion

We proposed a method for assisting the surgeon’s decision-
making process during DBS surgical planning. It first pro-
vides information for the neurosurgeon in the form of colored
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Table 2 Comparison between the trajectory produced by our planning (with weightings of kd = 1/kc = 1/kr = 4/ko = 4), and the reference
trajectory

Type
of
target

Case # Reference traj. Tref Computed traj. Tplan Gain Angle α

between
traj. (deg)

Execution times

Score
[0 − 1]

Dist.
to sulci
(mm)

Score
[0 − 1]

Dist.
to sulci
(mm)

Score
(%)

Dist.
to sulci
(mm)

Solution
space (s)

Color
maps
(s)

Optimization
(s)

GPi 1 0.398 2.052 0.233 6.573 41.46 4.520 19.22 6.53 124.57 15.14

2 0.200 6.222 0.114 8.206 43 1.985 5.82 6.69 122.92 18.51

3 0.230 6.042 0.221 6.299 3.91 0.257 0.46 6.02 109.62 19.21

4 1.000 0.054 0.166 9.424 83.4 9.370 24.17 6.40 149.89 14.22

5 0.298 4.396 0.172 7.491 42.28 3.094 7.15 6.61 139.83 16.9

6 0.430 1.263 0.230 8.103 46.51 6.841 23.36 6.11 126.81 54.99

7 0.400 5.714 0.262 11.677 34.5 5.964 14.97 6.26 101.35 63.24

8 1.000 0.555 0.177 8.918 82.3 8.362 16.72 6.16 121.09 17.89

9 1.000 0.648 0.174 7.606 82.6 6.958 10.15 6.49 142.36 19.02

10 0.343 3.157 0.121 9.178 64.72 6.021 6.38 6.20 149.91 13.93

11 0.360 1.480 0.200 5.961 44.44 4.481 5.78 6.54 120.16 11.83

12 0.345 3.228 0.257 6.795 25.51 3.568 23.98 6.69 104.52 14.17

13 0.228 6.140 0.178 6.809 21.93 0.668 4.40 6.56 108.88 13.22

14 0.309 3.892 0.199 6.446 35.6 2.554 3.20 6.60 122.47 10.78

STN 15 0.264 5.746 0.121 8.133 54.17 2.387 10.02 6.89 87.19 14.63

16 0.350 2.850 0.239 5.379 31.71 2.529 7.54 9.36 112.65 89.47

17 1.000 0.750 0.165 8.301 83.5 7.551 20.60 5.29 100.56 22.47

18 0.361 2.790 0.209 7.107 42.11 4.316 13.53 6.95 92.63 14.32

19 0.329 3.490 0.262 5.753 20.36 2.263 8.66 9.47 49.99 16.66

20 0.401 1.740 0.219 4.900 45.39 3.160 18.17 10.22 48.26 13.97

21 0.397 2.425 0.305 4.768 21.19 2.343 3.93 7.90 62.66 115.21

22 0.338 2.748 0.244 5.365 27.81 2.617 3.34 7.50 79.99 17.98

23 0.362 1.946 0.270 4.858 25.41 2.912 9.89 3.44 68.03 27.81

24 0.408 1.184 0.195 7.275 52.21 6.091 12.53 6.05 86.09 14.32

25 0.354 2.239 0.135 7.958 61.86 5.718 4.99 6.50 100.71 13.87

VLc 26 1.000 0.150 0.189 6.426 81.1 6.096 11.76 5.80 87.98 16.23

27 0.400 1.715 0.299 5.186 25.25 3.471 9.18 7.22 80.89 125.90

28 1.000 1.409 0.262 7.356 73.8 5.947 20.50 6.98 92.51 19.28

29 0.155 7.429 0.033 10.001 78.71 2.572 5.15 7.10 88.52 14.81

30 0.393 1.366 0.181 6.996 53.94 5.630 7.78 1.68 112.06 17.58

Averages 0.468 2.827 0.201 7.169 47.69 4.342 11.11 6.61 103.17 28.58

maps that allow the individual scores of the possible inser-
tion areas for each of the defined rules to be seen very quickly
and easily, facilitating the decision making. This method also
computes an optimal path according to those rules, i.e., the
path that has the best global score (which is the result of the
aggregative cost function), according to the chosen weigh-
tings. The computed angle α demonstrated that the trajec-
tories performed by the expert neurosurgeon were not so
far from our proposed path (average of 6.45◦ with the sec-
ond set of weightings) but not exactly the same. However, in

this kind of retrospective study, it is difficult to compare the
results with ground truth, as the trajectories that were actu-
ally used might not be the optimal ones. That is why we used
constraints and weighting factors defined by the neurosur-
geon and computed the scores from them, even if we were
aware that using such validation metrics was biased by the
fact that the method was built for minimizing these values.

We can analyze the results in different ways. The weight-
ing factors in the aggregative cost function might have not
been chosen at best and might need to be refined to obtain a
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Table 3 Comparison between trajectories computed with different weighting factors: kd = 1/kc = 1/kr = 4/ko = 4 for Tplan1, and kd = 1/kc =
1/kr = 4/ko = 10 for Tplan2

Type of Case # Computed trajectory Computed trajectory Differences Tplan1 /
target Tplan1 1/1/4/4 Tplan2 (forced orient.)1/1/10/4 Tplan2 (gain/loss)

Score
[0−1]

Dist. to
sulci
(mm)

Angle α1 (◦) Score
[0 − 1]

Dist. to sulci
(mm)

Angle α2 (◦) Angle
(%)

Dist.
to sulci
(mm)

GPi 1 0.233 6.573 19.22 0.192 3.802 7.58 −60.53 −2.771

2 0.114 8.206 5.82 0.082 8.204 5.61 −3.67 −0.003

3 0.221 6.299 0.46 0.163 6.297 0.43 −7.05 −0.002

4 0.166 9.424 24.17 0.167 8.922 21.24 −12.12 −0.501

5 0.172 7.491 7.15 0.123 7.496 6.99 −2.33 +0.006

6 0.230 8.103 23.36 0.205 4.321 2.93 −87.47 −3.782

7 0.262 11.677 14.97 0.205 4.335 3.71 −75.24 −7.342

8 0.177 8.918 16.72 0.172 5.820 13.90 −16.82 −3.098

9 0.174 7.606 10.15 0.149 7.515 7.70 −24.09 −0.091

10 0.121 9.178 6.38 0.122 9.144 6.10 −4.38 −0.034

11 0.200 5.961 5.78 0.148 5.959 5.72 −1.01 −0.001

12 0.257 6.795 23.98 0.179 4.467 3.76 −84.31 −2.328

13 0.178 6.809 4.40 0.137 6.808 4.40 +0.01 −0.001

14 0.199 6.446 3.20 0.158 6.446 3.34 +4.22 0.000

STN 15 0.121 8.133 10.02 0.078 8.147 10.25 +2.25 +0.015

16 0.239 5.379 7.54 0.154 5.631 7.32 −2.82 +0.252

17 0.165 8.301 20.60 0.167 5.423 3.78 −81.64 −2.878

18 0.209 7.107 13.53 0.177 4.661 8.51 −37.13 −2.446

19 0.262 5.753 8.66 0.193 4.559 1.42 −83.55 −1.194

20 0.219 4.900 18.17 0.210 4.900 6.20 −65.85 0.000

21 0.305 4.768 3.93 0.221 4.702 4.22 +7.34 −0.066

22 0.244 5.365 3.34 0.167 4.744 2.75 −17.76 −0.622

23 0.270 4.858 9.89 0.196 4.483 7.19 −27.25 −0.374

24 0.195 7.275 12.53 0.161 5.234 8.58 −31.48 −2.040

25 0.135 7.958 4.99 0.108 7.958 5.09 +1.94 0.000

VLc 26 0.189 6.426 11.76 0.144 6.209 10.37 −11.79 −0.036

27 0.299 5.186 9.18 0.211 4.893 6.28 −31.54 −0.293

28 0.262 7.356 20.50 0.186 3.385 6.43 −68.66 −3.971

29 0.033 10.001 5.15 0.027 10.087 5.16 +0.17 +0.086

30 0.181 6.996 7.78 0.145 6.983 6.46 −16.89 −0.013

Averages 0.201 7.169 11.11 0.158 6.051 6.45 −27.98 −1.118

better fitting with the reference trajectory. Indeed, in most of
cases (24 over 30), the angle between the computed trajec-
tory and the reference trajectory was improved when using
weighting factors favorable to the orientation aspect. This
suggests that in clinical routine, the optimization of the ori-
entation of the electrode relative to the axis of the target may
be of greater importance for the neurosurgeons than they
thought when setting the weighting factors. However, we can
also say on the contrary that, as the rules and the weighting
factors we used were defined by the neurosurgeons, the tra-
jectories we plan better fit their theoretical criteria (the global

scores of Tplan are better than the scores of Tref ), and maybe,
the planning tool they used in clinical routine did not pro-
vide them sufficient information and visibility for a correct
selection. Anyway, we consider to study more precisely and
refine the setting of the weighting factors in future works.

The method by Seitel et al. [32] we cited in sec-
tion “Related and previous works” uses the concept of Pareto-
optimality to provide a set of optimal insertion points, i.e.,
all the points that satisfy all the criteria simultaneously at
best for any weighting. Let us note that the optimal insertion
point that our software proposes is on the Pareto frontier, i.e.,
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Fig. 12 Detail of the result of Fig. 13. The red line is the computed
trajectory Tplan, and the green line is the reference trajectory Tref

Fig. 13 Color map of the aggregative soft constraint for patient case
#3, for alternative values of the weighting factors: kd = 1, kc = 1, kr =
4, ko = 10. Tplan is at another location

it satisfies all the criteria simultaneously at best for a particu-
lar weighting, it is one of the Pareto-optimal points. So when
a proposition has been done and the surgeon modifies the
weighting factors interactively, the new optimal solution that
is shown is the Pareto-optimal point, which corresponds to
the new weightings. This way, the surgeon does not need to
browse all the Pareto-optimal points to know which one sat-
isfies which criteria the most. He/she already knows when
giving the preference to some criteria over the others that the
proposed trajectory is the one that satisfies this setting at best.

We might also discover in the future that a constraint
is implicitly used by the neurosurgeon but has not been
expressed so far. In that case, a great advantage of our
approach is the modularity. The new constraint only has to
be translated into a cost function, formalized, and simply
added into the XML file, and it will be automatically taken
into account in the next planning. For instance, if we want
to eliminate the insertion areas located on the posterior part
of the head, behind the central sulcus, we could easily add
for instance a strict constraint restricting the angle of the tra-
jectory with respect to the Talairach coordinate system to a
certain range in the anterior–posterior rotation.

Other 3D shapes of structures could also be considered to
participate in the computation. For instance, if the 3D mesh
of vessels was available, we could load it with the other 3D
structures in the software and mark them as obstacles in order
to take them into account in a simple way. In the same way,
if we dispose of information about the functional zones and
their 3D shape and location, for example thanks to an atlas
or functional imaging, we can also integrate them as obsta-
cles in the process. Our system is ready to receive any extra
3D mesh to consider and any new constraint, which can be
expressed with the available operators. In terms of perfor-
mance, each new constraint added to the list will slow down
the process, in a proportion that usually depends on the size
and level of refinement of the involved polygonal meshes.
We did not compute this exactly, but we can estimate that
each constraint represents a few seconds more, which keeps
the process within a time reasonable enough to be used in
practice.

We chose to use the 3D polygonal representations of all
the anatomical structures, even if segmentation and recon-
struction steps are required to obtain the meshes. Our choice
was leaded by two factors. Firstly, the human eye is used to
see surfaces of objects, and, to our opinion, the volume ren-
dering with transparent layers is still not ergonomic enough
to be the best choice for visualizing the trajectory and its sur-
roundings with a sufficient precision in perception. Secondly,
one long-term goal of this work is to use it in conjunc-
tion with neuronavigation and to display the trajectory and
the surrounding anatomical structures with augmented real-
ity techniques. For this purpose, the polygonal meshes will
be required and reconstructed anyway. This implies that we
reconstruct the target, even in case of targets that cannot be
easily defined with an enclosed structure, such as for exam-
ple the ventral interior internal capsule. This could be done
with the help of anatomical atlases.

A point that could be improved is the shape of the trajec-
tory itself. In the first phase of the intervention, when insert-
ing the microelectrodes for the electrophysiological tests,
the neurosurgeon can use multiple tracks. So it would be
beneficial if our solver would be able to take into account the
possibility to have multiple tracks and find a cylinder-shaped
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trajectory clear from obstacles instead of just the linear tra-
jectory. This long microelectrodes mapping is often used to
compensate the phenomenon of brain shift [38], which has
been recognized as a possible source of inaccuracy.

Let us add that in order to measure the error, we used
as the reference trajectory a line resulting from a PCA on
the segmented reference electrode. This could be subject to
discussion, as we could have chosen another ground truth:
either the line joining the hole in the skull to the center of
the target or the planned trajectory recorded by the surgeons.
Both the first one and the validation method we chose are
approximations, not taking into account the bending of the
electrode due to pneumoencephalus and brain shift. Taking
the bending into account would suggest to be able to model
and predict those deformations. We will work on this point in
a close future. Using the trajectory that was planned by the
surgeon before the intervention would have been an inter-
esting alternative for our study, as this reference trajectory
is also straight and does not take the bending into account
either; however, as this planned trajectory can sometimes be
readjusted during the intervention if a vessel appears to be
on the way, we preferred to use the real post-operative data.

Let us also notice that the different errors that might be
present in the different steps of the process leading to our
input data have not been measured. With current imaging
technologies, intra-subject rigid registration appears to be
very effective, especially when images are subject to reliable
pre-processing tools. However, there could be slight uncer-
tainties in the patient-to-template registration, the segmen-
tation, or the reconstruction processes, which can possibly
be cumulative and temper our results. When dealing with
deep brain structures in the brain, or vessels, the different
image processing steps of the workflow should be as reli-
able as possible to minimize errors and reach submillimetric
precision. Futures works will integrate these parameters in
order to optimize trajectories accordingly.

Finally, this approach does not account for targets where
the electrode tip should be outside of the target, for exam-
ple multipolar stimulation of the dorso-ventral region of the
subthalamic nucleus. For now, we consider the trajectory as
a line. In future works, we will also study volumetric tools.
This might be a lead if we consider the multiple stimulators
as one volumetric tool.

Conclusion

We described an approach using a geometric constraint solver
fed with two types of input data: the formalization of the rules
governing DBS planning and patient-specific and generic
images, to automatically compute an optimal placement for
an electrode in the framework of assistance to DBS planning.
The results we obtained show that the solutions proposed

by our solver slightly differed from the solutions that were
actually performed in clinical routine, but they were how-
ever close to them and had better scores regarding the rules
defined by the surgeon themselves.

In future, we plan to feed the solver with other types of
information, which may be expressed by new rules and asso-
ciated constraints, especially when new targets will be con-
sidered. The choice of the weighting factors could also be
refined in a further study. The modularity of our system will
facilitate such extensions.
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