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Abstract.  In this paper we study and evaluate the influence of the choice of a 
particular reference volume as the electrophysiological atlas on the accuracy of 
the automatic predictions of optimal points for deep brain stimulator (DBS) im-
plants. We refer to an electrophysiological atlas as a spatial map of electro-
physiological information such as micro electrode recordings (MER), stimula-
tion parameters, final implants positions, etc., which are acquired for each pa-
tient and then mapped onto a single reference volume using registration algo-
rithms. An atlas-based prediction of the optimal point for a DBS surgery is 
made by registering a patient’s image volume to that reference volume, that is, 
by computing a correct coordinate mapping between the two; and then by pro-
jecting the optimal point from the atlas to the patient using the transformation 
from the registration algorithm. Different atlases, as well as different parame-
terizations of the registration algorithm, lead to different and somewhat inde-
pendent atlas-based predictions. We show how the use of multiple reference 
volumes can improve the accuracy of prediction by combining the predictions 
from the multiple reference volumes weighted by the accuracy of the non-rigid 
registration between each of the corresponding atlases and the patient volume.  

1   Introduction 

Deep brain stimulation is a way to stimulate parts of the brain that cause movement 
disorders like Parkinson’s disease, in order to minimize or eliminate disease symp-
toms without damaging the brain. This is done by placing electrodes in specific nuclei 
of the brain and stimulating them with electrical impulses. Such functional neurosur-
gical procedures of targeting small areas deep in the brain require precise targeting. 
Traditionally, this is done in two steps. An approximate target location is first selected 
pre-operatively. The target position is then adjusted intra-operatively. Manual local-
ization of the target is achieved pre-operatively by registering an anatomic atlas such 
as the Schatelbrand-Wahren atlas to a pre-operative MR scan of the patient. This step 
is required because the precise boundaries of structures of interest in DBS surgeries 
are either not or poorly visible in the pre-operative MR scans. The anatomic informa-
tion afforded by the atlas is thus used as a guide. Intra-operative adjustment is based 
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on microelectrode recordings (MER) obtained by passing a recording electrode in the 
brain towards the pre-operatively planned target and on patient’s response to stimula-
tion as a stimulating electrode moves towards the planned target. Stimulation is pro-
vided by applying electrical impulses and the responses to such stimulation include 
improvement in disease symptoms, occurrences of side effects, etc. Intra-operative 
adjustment is necessary because of known limitations of available anatomical atlases 
(e.g. hemispheres that pertain to different subjects, discontinuities between slices, 
etc.), limited accuracy achievable when registering an MR volume to these atlases, 
and because available atlases provide only anatomic information while the position of 
the final target point is chosen based on the electrophysiology. To address these issues 
and to simplify the procedure, we created a three dimensional electrophysiological 
atlas that can be used for pre-operative planning and intra-operative guidance [2, 3]. 

Over the last several years we have also developed fully automatic 3D non-rigid 
registration algorithms that allow us to register accurately 3D MR brain volumes to 
each other and we use these algorithms to develop our atlas. In the operating room, 
we acquire MER signals, information about stimuli (in volts), response(s) to these 
stimuli, and the positions at which these data are recorded. We acquire these positions 
in CT coordinates via the stereotactic system used for the procedure (StarFix micro-
Targeting Platform®, FHC Inc., Bowdoinham, ME). Using our registration algo-
rithms, we then map the positions at which intra-operative information is gathered 
from each patient onto the corresponding positions in one MR volume chosen as a 
reference. This reference volume is referred to as the atlas. In this way all the intra-
operative information gathered from the patients can be mapped onto the atlas for 
future use. The atlas thus becomes a repository that allows us to store information 
acquired from any number of patients in a normalized space.  

Rohlfing et al. have shown that the choice of the atlas has a substantial influence 
on the quality of registration-based segmentation [4, 5]. Moreover, they demonstrated 
that by using multiple atlases, the segmentation accuracy could be improved over that 
obtained using a single atlas. Here, we investigate the effect of the atlas on the accu-
racy of our approach to predict the position of DBS targets. We also investigate a 
method by which using a combination of the atlases leads to improvement in accuracy 
of automatic prediction. 

2   Data Set 

With IRB approval (Vanderbilt University IRB # 010809) a set of CT and MRI pre-
operative scans and a CT post-operative scan is acquired for each patient. CT and MR 
volumes are acquired with the patient anesthetized and head taped to the table to 
minimize motion. Typical CT images are acquired at kvp = 120 V, exposure = 350 
mas, 512x512 pixels. In-plane resolution ranges from 0.49 to 0.62 mm, and slice 
thickness from 1 mm to 2 mm. MR images are 3D SPGR volumes, TR: 12.2 ms, TE: 
2.4 ms, dimension 256x256x124 voxels; voxels dimensions are typically 
0.85x0.85x1.3 mm3. Fourteen patients who underwent STN (subthalamic nucleus) 
stimulation were used in the study presented herein. The patients were treated over a 
period ranging from December of 2003 to April of 2005. Patients included in this 
study are different from the ones used in our earlier work [2, 3]. Therefore, although 
results are qualitatively similar, quantitative comparison between results presented in 
this work and those presented earlier is not meaningful. 
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3   Method and Results 

Four volumes were manually selected as reference volumes (atlases) based on their 
morphological characteristics. These volumes were not from the test set of 14 patients 
used in this study. They were of earlier DBS patients. They were selected to have a 
variety in the sizes and symmetry/asymmetry of the ventricles. Because the nuclei of 
interest in this study are either not or poorly visible in current image acquisition se-
quences, registration is driven by the surrounding structures such as the ventricles, the 
thalamus, or the putamen, which are visible. The size and shape of the ventricles and 
more particularly the size of the third ventricles were chosen as the criteria for the 
selection of the atlases.  

3.1   Registration Algorithms 

Two types of registrations algorithms are needed to process our data: rigid and non-
rigid. The rigid registration algorithm is required to register MR and CT volumes of 
the same patient. The algorithm we have used for this is an independent implementa-
tion of a standard MI-based algorithm [10]. Non-rigid registration is required to regis-
ter patient data to an atlas and vice-versa. In this study, non-rigid registration is al-
ways performed on MR image volumes using an algorithm we proposed recently [1].  

3.2   Influence of the Choice of the Atlas on the Prediction Accuracy 

In this work, we used the method that we described in [2, 3] to create an electro-
physiological atlas based on the final positions of the implants. Because we now use 
four atlases, the process is repeated four times. Briefly, for each case we registered the 
MR patient volume to each the four atlases using the registration algorithms described 
in section 3.1. The registration parameters used for registration onto each of the four 
atlases were kept the same. We then projected final implant positions from each of the 
patients onto the four atlases, thus creating two clouds of points (one for the left and 
the other for the right STN) on each of the atlases. Figure 1 shows the results we have 
obtained for the left STN. Similar clusters were obtained for the right STN. To pro-
vide the reader with a better sense for the locations and spreads of the clusters we 
have superimposed contours obtained from the Schaltenbrand-Wharen (SBW) [9] 
atlas onto the MR images (the four atlases). Registration between each of the four 
atlases and the SBW atlas was performed based on a piecewise affine transformation 
using the Voxim software (IVS Solutions, AG, Chemnitz, Germany). This is known 
to be a difficult and inaccurate process. Thus, contour lines shown on the images in 
figure 1 may not exactly correspond to the true boundaries of the structures. The 
structure surrounding the core of each cluster is the STN. The structure above the 
STN is the thalamus with all its sub-nuclei; the structure below the STN is the sub-
stantia nigra (SNr).  

To quantify the spread of the cluster in each atlas, we have computed the Euclidian 
distance from the points in each cluster to their corresponding centroid. Table 1 reports 
this average distance (Dc) for each of the atlases for the left and the right sides. It can be 
seen from table 1 that atlas0 is the best in terms of the tightness of the clusters.  
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Fig. 1. Sagittal views of the right clusters on the 4 atlases (atlas 0 top left, atlas 1 bottom left, 
atlas 2 top right, atlas 3 bottom right). Contours extracted from the Shaltenbrand-Wahren atlas 
have been superimposed on the images to show the location and extent of the projected clusters 
with respect to anatomic structures seen in the SBW atlas.  

Table 1. Euclidian distance (mm) of cluster points with respect to the corresponding cluster 
centroid on each of the atlases (Dc) 

22.712.423

33.113.062

44.353.191

12.052.010

Tightness ranking of atlases
RMS spread right side 

(mm)
RMS spread left side 

(mm)Atlas

22.712.423

33.113.062

44.353.191

12.052.010

Tightness ranking of atlases
RMS spread right side 

(mm)
RMS spread left side 

(mm)Atlas

 

The tightness of the cluster depends on the quality of the non-rigid registration be-
tween each of the atlases and the patient volume, which depends in large parts on the 
morphological similarity between the volumes being registered. A single patient vol-
ume will be registered with a higher accuracy on the most similar atlas. To study the 
effect of the choice of the atlas on the prediction of the optimal position for the 
placement of the implant we selected the centroids of the clusters in each of these 
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atlases as the optimal implant positions in the corresponding atlases. These points 
were then projected using the transformations computed with the registration algo-
rithms back onto each of the patients. On each of the patients this projection resulted 
in four possible optimal positions for the implant, each related to one of the atlases. 
To quantify the effect of the atlas on target prediction accuracy, we computed what 
we call the pre-operative placement error. This error is defined as the Euclidean dis-
tance between the final intra-operative position selected by the surgical team and the 
position chosen pre-operatively. It is thus the distance by which the surgical team 
would need to adjust the position of the electrode during the procedure. Table 2 shows 
the mean and standard deviation of this error for both automatic (atlas based) and 
manual predictions, over the 14 volumes included in this study. Columns titled Atlas0, 
Atlas1, Atlas2 and Atlas3 correspond to the distances between the automatically pre-
dicted points using the corresponding atlases and the final (intra-operative) implant 
position, averaged over all the patients. The column titled Centroid represents the 
deviation between the centroid of the four predictions and the final implant position, 
averaged over all the patients. The column titled Manual represents the deviation 
between the target predicted pre-operatively by the surgeon and the final implant 
position, averaged over all the patients. Table 2 shows that the choice of atlas has a 
direct impact on the accuracy of prediction of optimal position of implant. In earlier 
work, we have shown that pre-operative target points obtained automatically were 
closer to the corresponding final points than the pre-operative target points obtained 
manually. This remains true in the results shown in table 2. Moreover, what table 2 
shows is that the pre-operative placement error could be reduced substantially if we 
could select automatically the best atlas for the case at hand, thus incurring minimum 
prediction error. We cannot, of course, use the pre-operative placement error as a 
criterion to select this atlas since the intra-operative position is not known at the time 
of planning. In the next section, we describe a method we propose to select the best 
atlas (or an optimal combination of the atlases) for a given patient.  

Table 2. Prediction errors incurred for atlas based predictions using individual atlases, cen-
troids of atlas based predictions, sensitivities of individual structures based predictions, sensi-
tivities of combination of structures based predictions and manual selection of targets. SD: 
Standard Deviation, T: Thalamus, TV: Third Ventricle, P: Putamen. 

1.410.740.850.870.80.830.990.9710.69SD

2.51.742.341.981.871.972.092.132.211.92MeanRight

1.170.920.850.890.930.930.991.110.940.85SD

2.231.661.931.711.81.81.91.721.992.01MeanLeft

T+TVPTVTAtlas3Atlas2Atlas1Atlas0

Sensitivities weightedCentroid

ManualUsing combination of multiple atlasesUsing individual atlases

Deviation from final implant (mm)StatisticSide

1.410.740.850.870.80.830.990.9710.69SD

2.51.742.341.981.871.972.092.132.211.92MeanRight

1.170.920.850.890.930.930.991.110.940.85SD

2.231.661.931.711.81.81.91.721.992.01MeanLeft

T+TVPTVTAtlas3Atlas2Atlas1Atlas0

Sensitivities weightedCentroid

ManualUsing combination of multiple atlasesUsing individual atlases

Deviation from final implant (mm)StatisticSide
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3.3   Multiple Atlases Based Prediction  

The easiest way to combine the predictions is to compute the centroid of the four 
predicted points and use it as the best automatic prediction. Prediction accuracy using 
the centroid of the cluster is substantially better than that based on manual predictions 
as can be seen in table 2. However, it is still not as good as that achievable using the 
best atlas for every patient. For instance, it was found that for the left side, using the 
best atlas for each of the 14 patients the pre-operative error was 1.46 mm averaged 
over the patients, while the same based on the centroid of the cluster was 1.8 mm and 
that based on manual predictions was 2.23 mm. To select one atlas (or perhaps a sub-
set of atlases) for a particular case, we need to find a way to estimate the likelihood 
that the atlas is more accurately registered to the patient than any other atlas. We 
achieve this through atlas-based segmentation of structures surrounding the target of 
interest. As discussed above, the STN is poorly visible in MR images. But surround-
ing structures such as the ventricles, the thalamus and/or the putamen can bee seen 
and have relatively well defined boundaries. To take advantage of this, the major 
basal ganglia structures (the putamen, the thalamus, the ventricles, the third ventricle, 
the red nuclei and the globus pallidus) were manually segmented on each of the four 
reference volumes by an expert. These segmented structures were projected from the 
four atlases onto the patients, resulting in four different segmentations for each struc-
ture on every patient. These contours were then used to estimate the specificity and 
sensitivity of each of the four segmentations for every structure using the STAPLE 
algorithm proposed by Warfield et al. [7, 8]. The computed sensitivity parameters 
were used, in turn, to weigh the contributions of the atlases to the prediction. We used 
a simple weighted average of the predictions made by the four atlases to arrive at the 
final automatic prediction.  

The weights are the sensitivities of the segmented structures for the four atlases. 
Sensitivities below 95% of the highest sensitivity were set to zero. Let P0, P1, P2 and 
P3 be the predictions based on atlases 0, 1, 2 and 3 respectively and sensitivity be 
denoted by p. Let the sensitivity for the left thalamus of the patient with respect to 
atlas0 be p_thal_left_0, that for the right thalamus with respect to atlas0 be 
p_thal_right_0 and that for the third ventricles with respect to atlas0 be 
p_third_ventricles_0. A similar nomenclature for sensitivities with respect to atlases 
1, 2 and 3 is used. Now, the average sensitivity of the structures on the patient volume 
with respect to atlas0 is given by 

3

0___0___0___
0

ventriclesthirdprightthalpleftthalp
SEN

++=  

Similarly, SEN1, SEN2 and SEN3 are computed. Next we define the set of indices IND 
such as  

{ })SEN,SEN,SEN,max(SEN *0.95 SEN k  IND 3210k ≥= . 

Then, the final prediction is given by, 
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In doing this, we eliminate the contributions of atlases that produce low sensitivity 
values for the structures, i.e., atlases that lead to poor segmentation results for struc-
tures surrounding the structure of interest. Table 2 also shows the prediction error 
when the sensitivities of the thalamus, the third ventricle, and the putamen are indi-
vidually used. These results show that, though predictions based on sensitivities of a 
surrounding structure are better than manual predictions, the use of sensitivities of the 
putamen has shown to increase the error compared to the use of the centroid. Simi-
larly, it can be seen that the use of sensitivities of the thalamus improves the accuracy 
of prediction for the right side, while the use of third ventricles improves the accuracy 
of prediction for the left side, both compared to the use of centroid. This suggests that 
combining the sensitivities of the thalamus and of the third ventricles could further 
improve the results as corroborated in table 2. 

4   Discussion and Conclusion 

From table 2, it can be seen that, using the sensitivities of the thalamus and the third 
ventricles together, the pre-operative error for the left side decreased to 1.66 mm 
compared to 1.8 mm when the centroid of the cluster was used and 2.23 mm when 
manual prediction was done. Similarly, for the right side, the errors were 1.74 mm, 
1.97 mm and 2.5 mm respectively. These results are clinically important because they 
could improve the quality of DBS surgeries both in terms of accuracy and time. 

The quality of segmentations achieved on the patient volume based on each of the 
atlases is a direct indication of the accuracy with which each of the corresponding 
atlases has been non-rigidly registered to the patient volume. Since the segmentations 
used are from regions around the (poor contrast) STN, our method serves as an ap-
proach to assessing the quality of non-rigid registrations in regions of low contrast in 
a patient volume. In our multi-atlas approach to prediction of optimal points for im-
plants in DBS surgeries, we use the above method of assessing the quality of registra-
tions to determine the contributions of the four atlases to the prediction process. It is 
conclusive from our results that the use of multiple atlases helps improve the accuracy 
of automatically predicting optimal positions for DBS implants. This scheme can 
easily be extended to other targets by changing the visible structures used to evaluate 
the quality of the registration. For instance, in the prediction of the target points for 
Globus Pallidus Internus (GPi), the putamen can be expected to play a key role due to 
its close proximity to GPi.  
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