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Abstract—After conception and implementation of any new
medical image processing algorithm, validation is an important
step to ensure that the procedure fulfills all requirements set
forth at the initial design stage. Although the algorithm must be
evaluated on real data, a comprehensive validation requires the
additional use of simulated data since it is impossible to establish
ground truth with in vivo data. Experiments with simulated data
permit controlled evaluation over a wide range of conditions (e.g.,
different levels of noise, contrast, intensity artefacts, or geometric
distortion). Such considerations have become increasingly impor-
tant with the rapid growth of neuroimaging, i.e., computational
analysis of brain structure and function using brain scanning
methods such as positron emission tomography and magnetic
resonance imaging.

Since simple objects such as ellipsoids or parallelepipedes do
not reflect the complexity of natural brain anatomy, we present
the design and creation of a realistic, high-resolution, digital,
volumetric phantom of the human brain. This three-dimensional
digital brain phantom is made up of ten volumetric data sets
that define the spatial distribution for different tissues (e.g., grey
matter, white matter, muscle, skin, etc.), where voxel intensity is
proportional to the fraction of tissue within the voxel. The digital
brain phantom can be used to simulate tomographic images of
the head. Since the contribution of each tissue type to each
voxel in the brain phantom is known, it can be used as the
gold standard to test analysis algorithms such as classification
procedures which seek to identify the tissue “type” of each image
voxel. Furthermore, since the same anatomical phantom may be
used to drive simulators for different modalities, it is the ideal tool
to test intermodality registration algorithms. The brain phantom
and simulated MR images have been made publicly available on
the Internet (http://www.bic.mni.mcgill.ca/brainweb).

Index Terms—Brain phantom, magnetic resonance imaging,
positron emission tomography, simulation, testing, validation.

I. INTRODUCTION

T HE work presented in this paper was motivated by the
continuing need for a three-dimensional (3-D) standard

data set to test, validate and measure the accuracy of different
image analysis procedures. Validation using data acquiredin
vivo is difficult since there is no direct information available
for the imaged object to corroborate various analyses. Manual
labeling is often used to determine truth indirectly in such
cases, however intra- and inter-rater variability makes it sub-
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optimal as a gold standard. Without perfectly known reference
data, absolute quantitative validation is not possible.

The use ofin vivo magnetic resonance (MR) or computed
tomography (CT) data confirmed by post-mortem images of
macro- or microtomed histological sections is also of limited
use, since tissue prepared for such imaging procedures may
suffer from cytolysis, shrinkage, tearing, and other gross de-
formations, making registration difficult and thus complicating
direct comparison with thein vivo data. Using post-mortem
data sets acquired soon after death is an option for validation
(e.g., see [1] for multimodality registration). However, the
tissue’s magnetic characteristics will be modified due to phys-
ical changes (such as decreasing temperature and oxygenation
level) affecting the MR signal and consequently the tissue
intensity contrasts on which post-processing procedures are
dependent.

Physical phantoms have been used to address these prob-
lems since they allow control over the object shape and
material properties. For example, geometrically simple phan-
toms for MR imaging made of agar gel with iron oxide
particles have been used to test classification algorithms [2].
More complex, anatomically realistic head phantoms such
as the well-known Hoffman brain phantom [3] have been
used for anatomical simulation to create positron emission
tomography (PET) images [3], assessment of reconstruction
accuracy of PET images [4], evaluation of single photon emis-
sion computed tomography (SPECT) imaging components [5],
testing registration of SPECT and PET images [6], and testing
modified filtered backprojection algorithms to correct for head
motion [7]. While physical phantoms permit extensive testing
in the real-world scanning environment, their strength is also
their weakness in that their stability makes it difficult to change
shape or material properties at will.

Digital phantoms have been proposed to address weaknesses
associated with both post-mortem data and physical phantoms.
The advantages of digital phantoms are many: they can be
easily modified to model pathology or variations in normal
anatomy. Simulating images from these phantoms allows com-
plete control over factors that may affect an algorithm such as
noise, contrast, slice thickness, pixel size, geometric distortion,
and movement artefacts. By varying each of these possible
sources of error, one can evaluate the procedure’s robustness
in a controlled fashion. Some uses of digital brain phantoms
include evaluation of PET imaging characteristics [8], [9],
evaluation of partial volume effects (PVE’s) in PET [10], [11]
and validation of registration algorithms [12]. The principal
weaknesses of simulated data are usually 1) the oversimplicity
of the phantom geometry, 2) the improper treatment of edge-
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Fig. 1. Input MRI volume. Coronal, sagittal, and transverse slices through CJH27, the(n = 27) average MRI volume used to build the phantom.

effects which leads to tissue mixing within imaged voxels,
and 3) improper modeling of the data acquisition and image
formation stages. In this paper, we address the first two
issues when generating a general purpose neuro-anatomical
phantom for use with any tomographic imaging modality.
The third issue is modality-specific and we give examples of
simulated PET and MR images. More detailed treatment of
the simulations concerned are given in related publications,
cited below.

While testing with simulated data is necessary for algorithm
validation, it is not sufficient. Additional testing with real data
must also be completed to demonstrate that the algorithm actu-
ally works under real-world conditions where some unknown
factors almost certainly remain. By definition, since they are
unknown, algorithm behavior with respect to these factors
will not have been simulated. While anin vivo study may be
statistically weaker due to limited data and greater variability,
results from such a study that behave in a manner consistent
with and comparable to simulations make a strong argument
for the validity of the method tested.

In this paper we describe the design, construction, and
application of a high-resolution, volumetric, anthropomorphic,
digital brain phantom that can be used to simulate medical
image data. For example, realistic PET images can be gener-
ated using a simulator that accounts for acquisition geometry,
attenuation, scatter, randoms, and Poisson noise [13] as shown
in Section III-A2. Similarly, MR images can be simulated
from physical principals by solving the Bloch equations [14]
as described in Section III-A1. The important advantage of
using this phantom are that the “answer” is knowna priori,
and the phantom can be used to compute an objective measure
of performance for a given image processing algorithm.

II. M ETHODS

A. Design

Our goal was to create a simple digital representation of
the human brain suitable for tomographic image simulation.
The model needed to have high resolution (e.g., high enough
to simulate 1mm MRI data sets) and must contain properly
model PVE’s1 so that classification algorithms can be tested.

1Partial volume effects (PVE’s) occur when more than one tissue type
occupies a single voxel element, e.g., at tissue boundaries.

Furthermore, the model must be anatomically accurate and as
realistic as possible to have greater value than more simply-
shaped phantoms. Most importantly, in order to be realistic,
the model should be completely 3-D.

A voxel representation was selected since smooth transitions
can be more easily modeled than, for instance, polyhedral
models. Other reasons include: the availability of 1) a high-
resolution low-noise data set [15] that could be used as an
anatomical guide; 2) automatic classification procedures to
correctly label the majority of voxels; and 3) 3-D visualiza-
tion/editing tools to facilitate manual correction during the
voxel-labeling phase, i.e., attachment of an identifying tissue
type to each image voxel. The following sections describe
phantom construction in more detail.

B. Construction

Phantom construction was based on a high-resolution (1-mm
isotropic voxels) low-noise data set that was created by regis-
tering 27 scans (T1-weighted gradient-echo acquisitions with
TR/TE/FA 18 ms/10 ms/30) of the same individual in
stereotaxic space where they were subsampled and intensity
averaged2 [15]. The volume contains 181 217 181 voxels
and covers the brain completely, extending from the top
of the scalp to the base of foramen magnum (see Fig. 1).
As a direct result of the high signal-to-noise ratio (SNR),
this single subject average dataset, dubbed CJH27, exhibits
fine anatomical details such as the claustrum, subthalamic
nuclei, gray matter bridges between the caudate and putamen,
and vessels passing through the lentiform nucleus; details
normally obscured by noise in single images. The 3-D, high-
resolution, anatomically accurate human brain phantom was
created by manually correcting an automatically classified
and preprocessed version of the MRI volume. The following
sections describe the process in more detail.

1) Preprocessing:Intensity nonuniformity in MR images
is one of the main causes of error when using classification
algorithms to automatically identify different tissue types since
the intensity variations blur the true intensity distributions of
individual tissue classes. This type of artefact was reduced by

2Stereotaxic space is a brain-based coordinate space which allows any
point in a brain volume to be referenced by three Cartesian coordinates. It
is used widely for intrasubject and intersubject image alignment, comparison
and quantitative analysis [16], [17].



COLLINS et al.: DESIGN AND CONSTRUCTION OF REALISTIC DIGITAL BRAIN PHANTOM 465

(a) (b) (c) (d)

Fig. 2. Output of fuzzy minimum-distance classifier. Transverse and coronal slices through the four of the five volumes output by the fuzzy classifier where
image intensity is proportional to class membership. (a) GMc, (b) WMc, (c) CSFc, and (d) FATc (BKGc not shown). Note that GMc, WMc, and CSFc volumes
contain muscle and scalp. These voxels were manually relabeled to give the final results of Fig. 3.

applying a 3-D nonuniformity reduction procedure based on
the deconvolution of the nonuniformity blurring kernel from
the intensity histogram of the image [18].

2) Classification: The goal of the classification step was to
correctly label as many brain voxels as possible to minimize
later manual intervention. A total of 4 000 training points
were selected by a trained neuroanatomist (N. J. Kabani)
for the following classes: 1) grey-matter (GMc); 2) white-
matter (WMc); 3) cerebrospinal fluid (CSFc); 4) fat (FATc); and
5) background (BKGc). (The “ ” differentiates volumes output
from the classifier from those finally used to build the phantom
after manual correction.) These training points were used to
drive four different automatic classification procedures [19]:
minimum-distance, nearest K-mean, fuzzy C-mean [20], and
artificial neural network (ANN) [21]. The minimum distance
(also known as nearest mean) and ANN classifications were
selected by the neuroanatomist as the best in that they yielded
the best representation for basal ganglia, cortical grey matter,
and white matter within the cerebellum, and they required
the least number of corrections. Since these two classifiers
gave essentially equivalent results due to the high SNR of the
images which resulted in good class separability, we chose to
base the creation of the phantom on the result of the simpler
minimum-distance classifier.

Classification of CJH27 yielded the spatial distribution of
different tissue types necessary to realistically represent the
human brain. However, a discrete classification, with only one
tissue label per voxel, did not allow PVE’s to be modeled.
In order to account for tissue mixing, it was necessary to
compute and represent fractional amounts for each tissue type
within each voxel. The latter was accomplished by using a
volume with -dimensional vector-valued voxels, where
was the number of tissue types represented in the phantom.
The th component of a voxel represents the fraction of
th tissue type within the voxel with the constraint

and that was normalized, i.e.,
Practically, the phantom was represented by ten volumes, each
one representing the amount of tissue(e.g., grey matter, white
matter, CSF, muscle, etc.) found at each voxel location.

We changed the standard minimum-distance classifier to
have a continuous output. Our “fuzzy” minimum-distance
classifier yields tissue fractions for each voxel based on the
distances computed by the classifier instead of giving only
the standard discrete label output. If the voxel’s intensity
was equal to any class mean , then the th tissue fraction

was set to 1.0 and all other tissue fractions were set to
0.0 Otherwise, for each class was
estimated to be inversely proportional to the distance between
the voxel’s intensity and the class mean:

(1)

Second, these values were normalized and stored in the vector
:

(2)

This implied that all classes had some nonzero representation
within each voxel. User intervention anda priori anatomical
knowledge were used to zero tissue probabilities for voxels
where certain tissues are known not to exist and to reassign in-
correctly labeled voxels. Fig. 2 shows the continuous output of
the fuzzy minimum-distance classifier before any corrections
were made.

3) Manual Correction: The five volumes (GMc, WMc,
CSFc, FATc, and BKGc) generated by the classifier (see Fig. 2)
contained erroneously labeled voxels and, thus, required a
number of manual and semiautomatic interventions. The result
of this corrective process was a 3-D tissue model, with one
volume per class, where voxel intensity represents the fraction
of tissue (between 0.0 and 1.0) within the voxel. Four of the
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Fig. 3. Digital Brain Phantom. Transverse and coronal slices through the (a) GM, (b) WM, and (c) CSF tissue volumes of the digital brain phantom.
(d) The discrete phantom is shown. Note that the discrete phantom is never used for image simulation. It is included here only to visualize the spatial
relationships between the different tissue phantoms.

TABLE I
TISSUE VOLUME DEFINITION

Structure Description

GM = e(GMc \B) grey matter within the brain parenchyma
WM = e(WMc \B) white matter within the brain parenchyma
CSF = e(CSFc \B+) cerebro spinal fluid surrounding the brain and within the ventricles
GL = GMcnGM) \B layer of glial tissue lining the ventricles

M + S = (GMc \B0) muscle and skin
OTH = e(WMc \ (B+)0) other tissue
FAT = (FATc \B0) fatty tissue

SKN = e(CSFc \B0) mostly skin
SKL = e((CSFc \B0) [ (BKGc \B0)) skull (does not include sinuses)
AIR = e((BKGcnSKL) \B0) air outside head and within sinuses

ten volumes that define the brain phantom are shown in Fig. 3.
Table I summarizes the correction steps that are described in
detail below.

As it was necessary to separate brain from nonbrain struc-
tures, the first step in the correction phase was the creation
of a discrete brain mask () by manual voxel painting using
software developed in house3 that permits tri-plane (coronal,
sagittal, and transverse) roaming through the volume with
arbitrary pan and zoom. The brain mask, which only identified
brain parenchyma and omitted all nonventricular CSF spaces,
was dilated and further edited by hand to create a second
mask containing all structures (e.g., brain parenchyma,
arteries, dura, sub-dural CSF, and CSF-filled cisterns) within
the skull cavity. The complement of each volume, and

respectively, were also created to identify nonbrain
structures.

The brain masks were used to separate each of the five
volumes into brain and nonbrain volumes. In each of following
steps, where masking and manual corrections were interleaved,

3Documentation at http://www.bic.mni.mcgill.ca/system/mni/Display/
Display.html

the total proportion of each tissue class in each voxel was
kept constant; those removed from one tissue class were re-
attributed to other volumes so that the sum of all tissue
fractions at each voxel was normalized to 1.0.

The WMc voxels within the brain mask became the final
WM phantom volume after manual editing [Fig. 3(b)], those
outside the dilated brain mask form the other (OTH)
class. The remaining WMc voxels (WMc WM OTH)
were due to PVE’s between grey matter tissue and CSF. Since
these voxels had a maximum value of less than 0.07 (where
pure tissue is 1.0), they were ignored and zeroed instead of
reattributing them to the GM or CSF volumes.

The GMc voxels within the brain became the final GM
class after manual editing [Fig. 3(a)]. The remaining GMc

voxels fell into two groups: 1) those within the brain that
were manually removed were from the inner surface of the
ventricles and were used to form the glial (GL) class; and
2) those outside the brain became muscle and skin (MS).

The FAT volume was created by editing FATc, using semiau-
tomated region growing and manual painting. The remaining
voxels were zeroed. Similar tools were used to produce the
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skull (SKL) volume by editing BKGc to identify all voxels
within the skull. All BKGc voxels within the brain mask were
zeroed. The remaining voxels formed the air (AIR) class.

After manual editing, voxels from the CSFc within
formed the final CSF volume containing both ventricular
and subarachnoid CSF [Fig. 3(c)]. The CSFc voxels left over
within the brain mask were ignored (zeroed) since they were
caused by partial-volume regions where grey and white matter
tissue occupy the same voxel as well as partial-volume regions
around the ventricles. (These voxels had maximum CSFc

values of 0.02 and 0.03, respectively.) Those that were left
over outside the brain mask were either manually added to the
SKL volume or formed the skin (SKN) volume, depending on
their proximity to these structures.

Since some voxels from the WMc, CSFc, FATc and BKGc

were zeroed, the integral of all tissue components was not
equal to 1.0 for all voxels within the phantom. These voxels
were simply normalized on a voxel by voxel basis, by dividing
their respective tissue components by their sum.

These ten “fuzzy” volumes, one for each class, define the
digital phantom. Three of those that define the brain are shown
in Fig. 3. A discrete version of the phantom was also created
by storing the label of the most probable class at each voxel
location and is shown in Fig. 3(d). A total of 20–30 man-
hours were required for all manual intervention required to
build the phantom. It is important to note that while there may
remain residual errors in the classification of some voxels of
the phantom even after the manual correction process, these do
not dilute the purity of the phantom for validation studies. By
definition, “truth” in the tissue labeling for any voxel is what
is stored in the reference volumes. To illustrate, a perfect MRI
tissue segmentation algorithm should be able to take a simu-
lated MRI image based on the reference volumes and recover
the class occupancy of every voxel in the reference volumes.

III. A PPLICATIONS

A. Image Simulation

1) MR Simulator: The MR simulator (MRISIM) [14] pre-
dicts image contrast by computing nuclear magnetic resonance
(NMR) signal intensities from a discrete-event simulation
of pulse sequences based on the Bloch equations. In order
to simulate realistic MRI images of the human brain using
MRISIM, the phantom was used to map tissue intensities
into images. The simulator accounts for the effects of various
image acquisition parameters by incorporating partial-volume
averaging, noise, and intensity nonuniformity [see Fig. 4(a)].

2) PET Simulator: The simulation of PET images with
PETSIMU [13] requires attenuation and emission coefficients
to be associated with each tissue class of the phantom. PET-
SIMU produces images by generating line integrals through
the phantom using the specific acquisition geometry and 3-D
detector response function of a multislice tomographic imaging
system. Physical effects such as attenuation, scatter, randoms,
detector efficiency, and Poisson noise are also incorporated to
generate realistic data [see Fig. 4(b)].

(a) (b)

Fig. 4. Simulated images. Transverse slices through (a) a simulated MRI
image (3-D T1-weighted gradient echo acquisition, TR/TE/FA= 18 ms/10
ms/30�) based on the ten volume phantom and (b) a simulated blood flow
PET image. To judge the quality of the phantom and the MR simulation,
compare Fig. 4(a) with Fig. 1(c).

B. Example Uses

1) Registration Validation:Since the same phantom is used
to drive each of the simulators described above, it becomes
an ideal tool to test same subject, intermodality registration.
One begins by applying a rigid-body transformation to the
phantom before image simulation. Each modality is then
simulated using the full battery of options (noise, contrast,
slice thickness, etc.) available from the simulators. Afterwards,
the registration procedure is applied. Since the rigid-body
transformation is knowna priori, it can be used as a gold
standard to test the output of the registration algorithm.

2) Classification Validation:Classification algorithms can
be evaluated in a similar manner. For example, the phantom
can be transformed before simulation to test the effect of
slice thickness and orientation on the estimated volume of
a particular tissue class or structure. The behavior of the
classification algorithm can be evaluated with respect to all
parameters available within the simulator. This evaluation
method has been used to compare different classification
algorithms by running them with the same set of simulated
input MRI data sets and comparing their output against the
phantom reference volumes [22].

IV. DISCUSSION AND CONCLUSION

The primary benefit of using digital phantoms and simulated
images is that many aspects of the imaging process can be
controlled, so that the behavior of an algorithm can be carefully
evaluated while yielding the important advantage that the
desired answer is knowna priori in the validation experiment.
Furthermore, unlike physical phantoms, modifications such
as identifying particular structures, adding pathologies, and
highlighting activations areas are easily performed.

The digital brain phantom described in this paper is based
on a high-resolution, high-SNR MRI volume of a normal
volunteer. In addition to the advantage of being anatomically
realistic, it models PVE’s between tissues, thus, avoiding sig-
nificant errors associated with the use of a discrete model. The
processes used to create the average MRI and the digital brain
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phantom are simple and can be repeated in other labs using
publicly available software for registration and classification.

This phantom may serve as a gold standard to measure the
performance of image processing algorithms, and has been
used to generate realistic MR [Fig. 4(a)], PET [Fig. 4(b)]
and CT (not shown) images that are suitable for validation
studies. The availability of a standard digital brain phantom
and the associated simulated images will make it possible to
evaluate the quality or functionality of procedures developed
in different laboratories, judge their applicability for a given
purpose, and compare them to other existing methods.

The work presented here is the first phase in the creation
of a complete digital brain model useful for validation. The
next phase will be to incorporate blood vessels, increase
the resolution of the phantom, and further subdivide the
anatomical model. We also plan to model the intensity vari-
ations that correspond to fine tracts in the white matter (e.g.,
occipital tracts). Since our initial design was motivated by the
requirements for comparison of classification algorithms, the
phantom contains only tissue type information. For use in elec-
troencephalogram simulations, we plan to introduce electrical
properties. Moreover, we are currently sub-dividing the grey-
matter tissue type into specific functional regions so that the
phantom can be used in brain-mapping experiments [23].

The phantom data described here is available from the
Montréal Neurological Institute (MNI), McGill University,
McConnell Brain Imaging Centre web site4 along with a
database of simulated MR images [24] so that any newly
developed algorithms can be evaluated with the same data,
thus providing a tool for comparison between methods.
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