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Abstract. Digital atlases of the human brain can help in the specific
localization of structures of surgical relevance and interest in Image
Guided Neurosurgery (IGNS). This paper outlines one of the steps in
the creation of a digital atlas intended for IGNS, using histological data.
The acquisition of histological data can include artefacts such as tear-
ing, shearing, stretching, shrinking, as well as inhomogeneous staining
leading to structural inhomogeneities. These inconsistencies are reduced
using a non-linear intensity based registration procedure where deforma-
tions are defined using a maximized correlation coefficient estimate. The
intensity artefacts brought about by inhomogeneous staining are reduced
by applying a slice to slice intensity inhomogeneity correction by mod-
elling the intensity mapping between slices as a third order polynomial
that is estimated with a Least Trimmed Squared fit. The lateral ventricle
was then segmented and to demonstrate increased smoothing along its
surface.

1 Introduction

Though several anatomical imaging methods exist, these methods are not al-
ways adequate in planning neurosurgical procedures. Imaging modalities such
as Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),
and Computed Tomography (CT) do not allow for a detailed analysis of cer-
tain structures in the brain due to their spatial resolution limitations. Digital
or computerized atlases can help improve the accuracy and precision of the spa-
tial localization of a region of interest within a patient’s brain when used in
conjunction with different imaging modalities [TITT].

The goal of Image Guided Neurosurgery (IGNS) is to use data from different
imaging modalities in order to help plan stereotaxic neurosurgical procedures.
Using this data, surgeons are able to interpret patient specific image volumes of
anatomical, functional, and vascular relevance as well as their relationships. How-
ever, atlases can provide histological, functional or cyto-architectonic informa-
tion to enhance a surgeon’s visualization and understanding[II[11]. For example
atlases of the basal ganglia and thalamus are required to determine stereotaxic
targets for surgical treatment of movement disorders, such as tremor associated
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with Parkinson’s disease [I]. In the standard stereotaxic method, linear scaling
is used to fit an atlas to a patient’s anatomy [12]. Our group was among the
first to use a non-linear registration to improve atlas warping, thus enhancing
positional targeting in patient’s anatomy .

The creation of an atlas from histological data is a three-dimensional (3-D)
problem and slices of histological data are two-dimensional (2-D). In most cases,
anatomical structures are defined by an anatomist on the 2-D slices. This 2-D
data must be reconstructed (tessellated) to create a 3-D geometric atlas that
can be mapped to any patient’s anatomy. Unfortunately, the acquisition of his-
tological data contains artefacts such as tearing, shearing, stretching, shrinking
or other types of morphological inconsistencies. If the 2-D data is reconstructed
into 3-D by simply stacking the 2-D histological data, these morphological incon-
sistencies will be present in the reconstruction. This includes non-homogeneous
structural definitions in addition to poorly defined and unsmooth surfaces. In-
consistent lighting and staining can also cause intensity inhomogeneities in re-
constructions of the stacked histological data. In this paper we present initial
work to correct the histological data by improving slice-to-slice alignment while
correcting for some intensity artefacts.

Other work has been done in creating digital atlases using histological data.
Ourselin et al.[8] used an intensity based block-matching strategy between slices
of histological data and a Least-Trimmed Squared (LTS) minimization in or-
der to define rigid or affine transformations from the source block to the target
block. A 3-D registration from the reconstructed volume with a reference MRI
was done using a similar block matching strategy. Toga et al.[13] used a fidu-
cial marker based registration process to align serial sections. Their method
uses a combination of local and differential scaling to put anatomical data in
Talairach space [12]. Kim et al.[5] used a thin-plate spline (TPS)[2] technique
to reconstruct a set of rat brain autoradiographs to a video block face refer-
ence. The TPS is a landmark based registration where the deformation between
analogous landmarks is recovered using affine transformations. Kimet al. imple-
mented their technique using landmarks defined on a grid or circle, that did not
necessarily have any anatomical significance. Nowinski et al.[6] created a 3-D
brain atlas database based on the atlases created by Talairach-Tournoux [12],
Schaltenbrand and Wahren [I(], and Ono, Kubik, Abernathey [7].

We propose a new technique in the creation of a digital atlas using histolog-
ical data for which no complementary data (such as complementary MRI data
or digital photographs of the blockface) is available. There are several cryogenic
and histological datasets in existence which are of high quality, have been studied
extensively, and pre-date the use of brain-imaging modalities or digital photog-
raphy. The goal of our research is to create a 3-D reconstructed volume of such
data while minimizing morphological variability introduced in the data acquisi-
tion process. Section 2 will describes the acquisition of the data while Section 3
describes the 3-D reconstruction technique.
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2 Histological Data Acquisition

The histological data set used here was acquired in 1957 from a male patient
who died of non-neurological complications. The brain was removed and fixed in
10% formalin and suspended in a gauze hammock to minimize any deformation.
The brain was then split at the midline after which a block, centered on the
thalamus and measuring 6cm from front to back, 4.4cm from top to bottom,
and 3.2cm from side to side, was sectioned out. The volume contains all of the
basal ganglia together with the amygdala and the hippocampus (except for the
posterior portion).

After dehydration the block was mounted in paraffin and placed in a micro-
tome. Pairs of slices were taken at 0.70mm intervals. Alternating sections were
stained with Luxol Blue for myelin and with a Nissl stain for cell bodies. Cor-
responding myelin and cell photographs were then placed together and matched
by hand using histological information. The contours were then segmented by
hand by a neuroanatomical expert (GB) using Adobe Photoshop.

3 3-D Reconstruction Methods

The 3-D reconstruction used a two step approach. Prior to implementing the
reconstruction scheme the contours and the histological images were separated.
A picture of all three of these images can be seen in Figure 1. The colour pho-
tographs of the stained image were then converted to grey-level images. These
images are considered in the reconstruction scheme described.

First a registration scheme was implemented in order to align homologous
anatomical structures between sections. An intensity inhomogeneity correction
was then implemented to correct for any lighting artefacts and inconsistent stain-
ing which may have occurred in the original data acquisition. These steps are
described in the following sections.

Fig.1. An example of the data set. Left: The colour data with segmentation lines
drawn. Middle: The segmentation contours. Right: Grey-level image.
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3.1 Registration

The Automatic Nonlinear Image Matching and Anatomical Labeling(ANIMAL)
registration scheme was used to reduce the morphometric variability between
slices [3l4]. The registration scheme is based on a 2-D lattice defined for each
slice which makes up the volume. A deformation vector is then calculated for
each node on the lattice. Each deformation vector is estimated by maximizing
the correlation coefficient between source and target data of the local intensity
neighborhood centered at each lattice point. Since we have no reference data, we
maximize anatomical consistency between slices.

In doing the non-linear registration we consider the data sequentially in sets
of three slices. Let the source be the second slice in the sequence of three slices.
Let the two extreme slices in this set be the targets. All three slices in the set
were blurred with an isotropic Gaussian kernel. Two different deformation vector
fields were calculated to define the warp from the source slice to each of the target
slices. The average of these two deformation vector fields was then applied to
the source slice, thus maximizing its similarity with both targets simutaneously.
We then incremented our procedure by a slice and consider the next set of three
slice (the source slice from the previous step is now a target slice, and one of
the target slices from the previous step is now a source slice). This procedure is
done in a hierarchical fashion starting with blurred data to establish the initial
fit. The blurring is reduced and the transforms are refined on the subsequent
steps.

The voxel size of each slice was 34um x 34pm x 700um. Based on this reso-
lution, the blurring was done with a Gaussian kernel with a Full Width at Half
Maximum (FWHM) of 640pm, 340pum, and 204pm. Deformation were calcu-
lated at each resolution in scale space and then applied to the sourced vector.
The blurring was done to the results calculated at the previous step in scale
space and then applied to the transformed images from that step. Parameter
details for each step are given in Table 1.

Registration parameters were verified using two arbitrary slices and calculat-
ing the deformation from the source to a target. The deformation was applied
to the contours of the source and the chamfer distance between the transformed
contours and the target was calculated. Using this technique a stiffness of 0.675,
a weight of 0.40, and a similarity 0.05 were chosen for all resolutions in scale
space.

Table 1. Parameters used in the Registration procedure for Different Resolutions in
Scale Space.

“Step 1[Step 2[Step 3‘

FWHM (pm) 640 340 204

Step Size (um) 1700 | 850 510
Lattice Diameter (um)|| 3400 | 1700 | 1020
Sub Lattice 30 20 20
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The algorithm for the registration procedure is given below.

1. for slice=1 to 84 set trasnformation[slice| to zero

2. for iter=1 to 3 blur all slices with blur[step]
— for slices=1 to 84
—— t; = estimate of deformation[slice i to slice i — 1]
—— t9 = estimate of deformation[slice i to slice i + 1]
—— update transformation[s|=average(t; + t2)

3. for slice=1 to 84 apply transformation]s] to slice s

It should be noted here that this registration procedure will not account
for any global deformations. Local anatomical inconsistencies between slices are
accounted for by this process For example, uniform shrinkage throughout the
data set cannot be accounted for since there is no reference. However this atlas
is intended for use in an IGNS platform, therefore global scaling or non-linear
transformation when registering the atlas to patient data should account for
global deformations.

3.2 Intensity Inhomogeneity Correction

Intensity artefacts are also incurred during the acquisition of the histological
data. Inhomogeneous lighting and inconsistent staining can cause artefacts in
the intensity of the 3-D reconstructed volume. The intensity inhomogeneity cor-
rection scheme developed by Prima et al.[9] was used. The technique models the
intensity mapping of one image to another as a polynomial with degree greater
than order one using an LTS fit. This mapping is then applied to all the pixels
in the image.

Here we considered the data sequentially in groups of three slices. Much like
in the registration case consider the middle slice the source and the two extreme
slices the targets. The polynomials found through the LTS fit in this case were
added. The procedure is then incremented by a slice, such that the new center
slice is now the source slice. We consider the spatial variation between slices
in the histological data set to be small enough to be accommodated by the
technique. There is only one pass taken through the entire data.

4 Results

Figure 2 shows a pictoral view of the results after the registration step. The box
represents the region of interest shown in Figure 3.

Figure 2 shows the spatially and intensity uncorrected and corrected data.
Figures 3 shows a close of of both datasets, indicated by the box in Figure 2.
The close-up on the right shows that the contours have been smoothed.

To qualify the smoothness of the end result, the lateral ventricle was manually
segmented at each slice in the volume. A surface rendering of this segmentation
was done. Figure 4 below shows a view of the reconstructed ventricles of both
the spatially corrected and uncorrected volumes. These surfaces can be seen in
Figure 4. Smoothing has taken place along the edge of the ventricle demonstrated
as shown in the close-up of the boxed areas.
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superior

lateral medial
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lateral medial
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Fig. 2. Volumes before and after registration correction Left: The original, uncorrected
data. Second from the Left: The post-registration output. Third from the Left The post-
registration and intensity normalized output. Right: Orientation. Top: Coronal View.
Middle: Saggital View. Bottom: Transverse View. The boxed region will be the focus

of Figure 4.

Fig. 3. Close-up of volumes before and after registration correction. Left: The data
prior to all correction. Middle: Spatially corrected data. Right: Spacially and intensity
corrected data. Smoothing of the edges have occurred. Minimization of streaking occurs

in the intensity normalized volume/

Fig. 4. First and Second Images from the Left: Uncorrected and corrected manually
segmented ventricles. The box denotes the focus of the remainder of the image. Third
and Fourth Images from the Left: Close ups of the boxes areas showing increased
smoothing along the ventricle after spatial correction has been applied
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5 Future Work and Conclusion

This atlas is intended for use with an IGNS system and when complete, it would
replace the simple stereotaxic atlas in use [11]. This would be the first step
towards a full integration of this atlas in an IGNS platform.

This work is also done with older data which has no block-face or MRI
reference. This method should be tested against results obtained with reference
data to see how it compares with such methods.

An intensity inhomogeneity scheme better suited to histological data is also
necessary. Although the correction scheme used here yields global slice-to-slice
intensity correction, it is not optimized for spatially variant inhomogeneity be-
tween slices. An adaptive thresholding technique, is being considered. This tech-
nique would examine a neighborhood of pixels and use a polynomial fit between
a reference slice and the target slice. When the registration and intensity nor-
malizations steps have been completed, we will continue to the next phase of
our work where the contours will be deformed using the same transformations
defined in the registration steps mentioned above. Also, 3-D geometrical and
anatomical atlases need to be generated in order to integrate this atlas into an
IGNS system.

We have presented here a method to reconstruct 3D volume from 2D his-
tological data, while accounting for anatomical inconsistencies and slice to slice
intensity inhomogeneities. The results demonstrate increased smoothness of the
reconstructed volume. This will allow us to proceed in creating a 3-D geometric
atlas of the basal ganglia and thalamus for use in stereotaxic IGNS.
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