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Abstract
Purpose Both frame-based and frameless approaches to
deep brain stimulation (DBS) require planning of insertion
trajectories that mitigate hemorrhagic risk and loss of neuro-
logical function. Currently, this is done by manual inspection
of multiple potential electrode trajectories on MR-imag-
ing data. We propose and validate a method for computer-
assisted DBS trajectory planning.
Method Our framework integrates multi-modal MRI anal-
ysis (T1w, SWI, TOF-MRA) to compute suitable DBS tra-
jectories that optimize the avoidance of specific critical brain
structures. A cylinder model is used to process each trajectory
and to evaluate complex surgical constraints described via
a combination of binary and fuzzy segmented datasets. The
framework automatically aggregates the multiple constraints
into a unique ranking of recommended low-risk trajectories.
Candidate trajectories are represented as a few well-defined
cortical entry patches of best-ranked trajectories and pre-
sented to the neurosurgeon for final trajectory selection.
Results The proposed algorithm permits a search space con-
taining over 8,000 possible trajectories to be processed in
less than 20 s. A retrospective analysis on 14 DBS cases
of patients with severe Parkinson’s disease reveals that our
framework can improve the simultaneous optimization of
many pre-formulated surgical constraints. Furthermore, all
automatically computed trajectories were evaluated by two
neurosurgeons, were judged suitable for surgery and, in many
cases, were judged preferable or equivalent to the manually
planned trajectories used during the operation.
Conclusions This work provides neurosurgeons with an
intuitive and flexible decision-support system that allows
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objective and patient-specific optimization of DBS lead tra-
jectories, which should improve insertion safety and reduce
surgical time.
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planning · Parkinson’s disease · Image-guided neurosurgery ·
Decision-support system

Introduction

Deep brain stimulation (DBS) is an increasingly important
treatment for many pharmaceutically resistant movement and
affective disorders [1]. The procedure is particularly effec-
tive for moderate and severe Parkinson’s disease (PD), a neu-
rodegenerative disorder that affects 1 % of population over
60 years of age [2] and over one million people in North
America [3]. DBS surgery involves the implantation of stim-
ulating electrodes in deep brain structures (e.g., the basal
ganglia or thalamus) via minimally invasive image-guided
neurosurgery (IGNS) that relies on preoperative imaging of
the patient’s brain and precise intraoperative registration of
these images with the position of the surgical tool (patient-
to-image registration). Depending on the nature of the symp-
toms and signs, the electrodes are targeted at different nuclei
of the brain. For example, the subthalamic nuclei (STN) are
a common target for alleviation of motor fluctuations, dyski-
nesias, rigidity, tremor and slowness of movement symptoms
that characterize advanced PD [3]. For essential tremor, the
STN [4] and the ventral intermediate nucleus (VIM) of the
thalamus [5] can both be used as target.

DBS insertion comprises multiple stages. (1) A frame-
based or frameless stereotactic MRI is performed, often
with injection of contrast medium, to obtain high-resolution
datasets of the patient’s brain. The neurosurgeon examines
these images to determine precise electrode target locations
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(unilateral or bilateral) and safe linear trajectories from the
surface of the head to the identified targets that avoid crit-
ical brain structures, to minimize the likelihood of surgical
complications. (2) In our center, the preoperative MRIs are
registered to the patient during surgery, allowing tracking of
the position of surgical tools. The procedure is also assisted
by integration of a stereotactic atlas of the basal ganglia and
thalamus [6,7]. (3) An array of 1–5 microelectrodes (2 mm
apart) is then inserted, via a small burr hole and progressively
advanced to the target for micro-electrode recording (MER)
of neuronal activity, allowing localization of the physiologi-
cal extent of the subthalamic nucleus and neighboring nuclei
[8,9]. Micro- and macrostimulations are also performed,
to determine salutary and untoward effects of stimulation.
These measurements are complementary, and the choice of
final lead placement depends on the electrode with the best
MER profile and the least side-effects. (4) The deep brain
stimulation electrode is then inserted, and an intraoperative
CT scan (O-arm) is performed with fusion to the preopera-
tive MRI scan to confirm adequate lead placement. (5) An
MRI scan is performed after surgery to confirm electrode
placement. (6) Finally, the lead is connected via an extension
to a pulse generator placed in a subclavicular subcutaneous
pocket under general anesthesia. (7) The deep brain stimu-
lator is programmed over several weeks in order to achieve
optimal therapeutic effect.

While intraoperative patient-to-image registration is now
widely available on commercial neuronavigation platforms,
the manual task of preoperative planning can be com-
plex, time-consuming and user dependent. Despite the care-
ful planning, significant surgery-related complications such
as intra-cerebral hemorrhage, subdural hematoma, venous
infarction, seizure, CSF leak, perioperative confusion and
improper lead placement, have been reported [3]. Surgi-
cal complications related to electrode trajectories may be
reduced by using plans designed to avoid surface veins, arter-
ies running within sulci, ventricles, critical motor and sensory
cortices, and deep nuclei such as the caudate nucleus.

The most common clinical protocol for trajectory plan-
ning involves manual inspection of a single anatomical
MRI dataset: a T1w anatomical scan with gadolinium con-
trast (T1w-Gd [T1w-Gadolinium]) for visualization of the
brain and major blood vessels. Using standard visualization
tools on a commercial neuronavigation platform, the sur-
geon empirically searches for a safe trajectory that avoids the
aforementioned critical structures. Unfortunately, with man-
ual planning, only a few trajectories can be thoroughly
analyzed in a reasonable amount of time therefore yield-
ing subjective and potentially sub-optimal planning. Fur-
thermore, this planning process must be systematically
reproduced for each DBS case because, as shown in Fig. 1,
there are sizeable variations in the choice of insertion strate-
gies across different patients. In our center, this trajectory

Fig. 1 Atlas of manually planned trajectories (to the left and right
STN) obtained from 20 recent DBS cases performed from 2009 to 2011.
This example demonstrates the significant variability with respect to the
choice of DBS trajectory for a unique target. These manually planned
trajectories are designed to enter at the crest of gyri and to avoid surface
veins, sulci and the ventricles. Most chosen trajectories enter the brain
through the second frontal gyrus

planning process typically takes between 10 and 25 min
per target depending on the patient-specific complexity of
gyral patterns, cortical atrophy and ventricular size. Another
related work [10] reports planning times of up to 1 h 30 min
where half the time is dedicated to choosing a suitable tra-
jectory direction.

Several computer-assisted tools have been developed to
help neurosurgical teams with different aspects of the over-
all DBS procedure, and advanced MRI techniques have been
developed for direct visualization of the STN and other basal
ganglia structures [11,12]. Probabilistic functional atlases
relating target sites to clinical outcome have also been used
for semi-automatic or automatic target prediction [13,14].
Additionally, finite element models (FEM) of the extracellu-
lar electric field were proposed to predict the volume of tissue
activated [15,16]. For the specific issue of minimizing risks
of complications related to electrode insertion trajectories,
some experimental software platforms [17,18] have been
proposed to simulate the surgical insertion and to automat-
ically highlight any intersected critical structures along the
chosen trajectory. On these platforms, the entry point selec-
tion remains empirical. Nowinski et al. [19,20] developed a
high-resolution stereotactic atlas of human brain vasculature
based on multiple scans of a single normal subject on 3 T
and 7 T MR scanners. Recently, Navkar et al. [21] proposed
an interesting volume visualization technique where the crit-
ical structures are projected onto a 3D reconstruction of the
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patient’s skin. This visualization technique allows immedi-
ate identification of collision-free paths without the need to
traverse the entire patient dataset (slice-by-slice) for each
trajectory. However, arterial blood, extracted from a time-of-
flight (TOF) [22] MRI dataset, is the only critical structure
considered. D’Haese et al. [23] introduced the CranialVault
platform to assist the surgeon throughout all stages of a DBS
intervention. During preoperative planning, this platform can
be used to predict suitable DBS target points [13] but the
level of automation of trajectory planning is limited to a pre-
defined (fixed) approach angle, without taking into account
any patient-specific critical brain structures.

Recently, there has been considerable interest in devel-
oping computer-assisted solutions to preoperative trajectory
planning for DBS and other neurosurgical procedures. These
methods propose to automatically traverse and score a large
number of trajectories according to a set of surgical con-
straints designed to mimic the decision-making process of
neurosurgeons. With this new paradigm come, a number of
important challenges and proposed solutions generally vary
according to the choice of surgical constraints, their repre-
sentation (atlas or patient based) and their aggregation.

Some methods use an anatomical atlas [24,25], aligned to
the patient data, to represent the critical structures or even
multi-modal atlases [26] to also include vascular and func-
tional information. While the use of atlases yields highly
customizable solutions that avoids the challenges inherent to
segmentation of the critical structures on each patient dataset,
most recent methods favor the latter approach because it bet-
ter accounts for inter-subject variability. Segmented critical
structures typically consist of the ventricles and sulci [10,
14], and some methods [27–29] also integrate patient-spe-
cific vascular information, to account for subcortical blood
vessels and surface veins that do not follow gyral patterns.
However, the analysis is often limited to major vessels only.

In most aforementioned methods, simultaneous avoidance
of the critical structures is achieved by computation of a risk
volume that weights the cost of crossing any given voxel
within a patient’s MRI dataset. The cost of crossing a voxel
is derived from the calculation of distance maps [30], which
encode the minimal distance to binary masks associated with
the brain structures to avoid. Trajectories are typically ranked
according to either the sum of voxel costs (e.g., in [24,26])
or according to the maximal voxel cost along the trajectory
(e.g., in [28]) because almost hitting a critical structure once
is more severe than approaching the same critical structure
multiple times at a safer distance. Shamir et al. [29] proposed
to compute both measures, to distinguish between trajecto-
ries that approach a critical structure once or many times
along the path, but do not provide any ways of aggregating
their two distinct rankings. Specific to DBS, Brunenberg et al.
[28] also limits the search to a trajectory anterior to primary
motor cortex. Alternately, Essert et al. [10] define geometric

constraints to minimize the path length and to optimize the
lead orientation along the target’s major axis.

We present a DBS planning framework that incorporates
several key innovations at every stage of the surgery planning
process: from MRI acquisition to automatic trajectory selec-
tion. First, the trajectory planning is performed using a multi-
modal MRI acquisition protocol that enables avoidance of
several brain structures, especially venous and arterial vessels
using dense susceptibility-weighted imaging (SWI) [31,32]
and TOF MRI [22] datasets. Second, each trajectory is mod-
eled as a volumetric cylinder, rather than a straight line, which
easily enables the integration of complex rules that can be
applied to both binary and fuzzy datasets. Third, our frame-
work meaningfully aggregates the many constraints into a
unique trajectory ranking. Automatic trajectory planning can
be executed by the surgeons and the returned trajectories
visualized on our interactive software platform. A retrospec-
tive analysis on a series of DBS cases is performed to validate
our technique.

Methods

Overview

The flowchart of Fig. 2 shows a high-level view of the pro-
posed framework. Two categories of user inputs must be pro-
vided to the framework: surgeon-defined inputs and MRI
dataset inputs. The surgeon-defined inputs consist of a tar-
get point and a set of surgical constraints to optimize. The
target typically depends on the symptoms to alleviate and
is chosen by the neurosurgeon, from manual inspection of
the MRI datasets, as part of their established clinical routine.
The constraints to optimize were defined by the surgeons and
are listed in section “Surgical constraints definition”. The
MRI dataset inputs are acquired via a multi-modal acquisi-
tion protocol presented in section “MRI acquisition”. These
raw datasets are post-processed to extract a list of entry points
(i.e., the trajectories) to evaluate and to segment critical brain
structures. These post-processing steps are described in sec-
tion “Image processing”. Finally, the surgical constraints,
the segmented datasets, the target and the list of entry points
are passed to our automatic trajectory planning algorithm
(presented in section “Automatic trajectory planning”) that
meaningfully ranks the possible trajectories. Low-risk (rec-
ommended) trajectories can be further inspected by the sur-
geon on a convenient graphical user interface (presented in
section “DBS planning framework”).

Surgical constraints definition

Our automatic trajectory planning framework is governed
by a set of customizable surgical constraints. Similar to the
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Fig. 2 High-level flowchart for multi-modal automatic trajectory planning framework

work of Essert et al. [10], our constraints are subdivided
into two categories: hard constraints and soft constraints.
Hard constraints must be satisfied and are used to discard
any trajectory that intersects a critical structure or comes
within an unsafe distance. Soft constraints are simultaneously
optimized as part of our automatic trajectory planning algo-
rithm. A core set of constraints were originally obtained from
multiple interview sessions with DBS experienced neuro-
surgeons (see constraints #1–5 below). Experimentally, new
constraints were found to interplay with the surgeon’s deci-
sion-making process [33] and were introduced to the global
framework (see constraints #6 and #7 below). The constraints
are summarized as follows:

1. Entry point within the frontal lobe (hard constraint). To
reduce the risk of introducing new neurological deficits,
the neurosurgeon typically selects an entry point within
the frontal lobe and anterior to the primary motor cortex.
Hence, our implementation concentrates the trajectory
analysis within a specific cortical area of the frontal lobe
(about 5 cm thick), based on the possible range of DBS
trajectories exhibited in Fig. 1.

2. Avoid the midline (hard constraint). The midline is
avoided since it encompasses the thick mid-sagittal sinus
and because the targets are off the midline. In our imple-
mentation, this hard constraint discards any entry points
that are contralateral to the target.

3. Avoid ventricles (hard/soft constraint). Ventricles are
avoided to prevent CSF leaks, brain shifts and lead devi-
ations [34]. A hard component is defined to eliminate

any trajectory that intersects a ventricle or passes it at an
unsafe distance (e.g., <2 mm). Furthermore, a soft com-
ponent is defined to maximize the distance between the
trajectory and the ventricles.

4. Avoid sulci (hard/soft constraint). Sulci are avoided
because they contain small vessels that may not be well
depicted by MRI protocols. These vessels should be
avoided to prevent hemorrhages [35]. A hard component
is defined to eliminate any trajectory that enters a sulcus.
A soft component is defined to maximize the distance
between the trajectory and the sulci.

5. Avoid subcortical blood vessels (soft constraint). In clin-
ical settings, only large veins and arteries that are vis-
ible with gadolinium contrast are considered during
preoperative planning. Our implementation proposes
the use of advanced SWI and TOF MRI acquisition
techniques. Avoidance of blood vessels is achieved
with the definition of a soft constraint, applied to
a fuzzy vessel segmentation dataset, to prioritize the
avoidance of larger sized vessels over smaller ones.

6. Minimize overlap with caudate (soft constraint). Mini-
mizing the overlap with the caudate nucleus [8] is pre-
ferred because it is linked to symptoms of perioperative
confusion. A soft constraint is therefore defined to mea-
sure the amount of voxel overlap with the caudate.

7. Minimize overlap with cortical gray matter (soft con-
straint). Experimentally, it was found that the sulci
avoidance rule alone does not prevent trajectories from
intersecting the bottom of sulci (due to partial volume
effects) or with large stretches of cortical gray matter
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Fig. 3 Multi-modal MRI acquisition protocol. a T1w, b T2w, c SWI, d TOF

next to a sulcus, which may increase the risk of causing
new neurological deficits. This soft constraint comple-
ments #3 and attempts to minimize the amount of voxel
overlap with cortical gray matter.

MRI acquisition

Our MRI acquisition protocol is performed on a 3 T Sie-
mens TIM Trio with a 32-channel head coil (see Fig. 3).
First, a sagittal T1w anatomical scan of the entire head with
1 × 1 × 1- mm resolution is obtained using a 3D magneti-
zation-prepared rapid gradient echo (MP-RAGE) sequence
(TR = 2,300 ms, TI = 900 ms, TE = 2.98 ms, α = 9◦). A trans-
verse T2w scan of the brain with 1 × 1 × 1- mm resolu-
tion is then obtained using a 3D turbo spin-echo sequence
(TR = 3,200 ms, TE = 493 ms, variable flip angle). Next, a
transverse SWI dataset of the brain with 0.5 × 0.5 ×
1- mm resolution is obtained using a fully flow compen-
sated 3D gradient echo sequence (TR = 34 ms, TE = 20 ms,
α = 12◦, BW = 120 Hz/px). Finally, an MRA dataset is
obtained with 1 × 1 × 1- mm resolution using a 3D multi-
slab TOF (4 slabs, 44 slices/slab, transverse acquisition,
TR = 22 ms, TE = 3.85 ms, α = 18◦). These datasets are all
acquired in a single session and are aligned by linear registra-
tion (rigid body: 6 parameters, cost function: mutual infor-
mation). The total acquisition time is 40 min.

The T1w, SWI and TOF datasets are used for computer-
assisted trajectory planning purposes. The T2w dataset is
only acquired to help surgeons with other planning duties
such as target identification. The use of the SWI–TOF pro-
tocol has several advantages over the conventional T1w-Gd
protocol. First, the SWI–TOF protocol does not require the
injection of a contrast agent, which adds significant cost to
each study and has some associated medical risks (primar-
ily nephrogenic systemic fibrosis [36]). Second, the T1w-Gd
protocol does not distinguish between arteries and veins as
they both appear bright. Third, as shown in Fig. 3c, d, the

SWI–TOF is capable of imaging sub-millimeter vessels with
good contrast.

Image processing

Pre-processing of T1w dataset

The T1w dataset is first corrected for intensity non-unifor-
mity using N3 (Nonparametric Non-uniform intensity Nor-
malization) [37] and an histogram matching filter [38] is
applied for intensity normalization. A binary brain mask is
then estimated using the brain extraction tool (BET) [39]
from the FSL library [40]. Finally, the processed T1w data-
set is registered to the ICBM-152 atlas [41] using automated
nonlinear image matching and anatomical labeling (ANI-
MAL) [42,43], which provides tissue classification (into
GM, WM and CSF classes) via INSECT [44] and atlas-based
labeling of the lobes and the basal ganglia nuclei.

Search-space definition

A list of brain entry points (3D coordinates) must be pro-
vided as input to the automatic trajectory planning algorithm.
In our implementation, entry points were extracted from a
binary voxel representation of the brain surface, where all
entry points are equally spaced according to the resolution
of the T1w dataset (1×1×1- mm resolution). We used binary
morphological operators on the computed brain mask to iden-
tify voxels at the surface of the cortex, yielding a binary brain
surface mask. Entry points outside a pre-defined bounding-
box (within the frontal lobe) or contralateral to the target were
automatically excluded compliance with constraint #1 and 2.
For convenience, this bounding-box was defined once by the
collaborating surgeons using the ICBM-152 atlas [41] and
transformed to native space for each patient. The remaining
entry points define the search space for automatic trajectory
analysis.
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Fig. 4 The segmented critical structures. a Tissue classification of the
T1w dataset yields binary segmentation of sulci (constraint #3), ventri-
cles (constraint #4) and caudate (constraint #6). b Cortical GM voxels,
obtained from tissue classification of the T1w dataset, are scaled such

that a greater risk is given to GM voxels at bottom of deep sulci (con-
straint #7). c, d The SWI and TOF datasets are filtered for background
suppression using a fuzzy vesselness measure (constraint #5)

Critical structure segmentation

Binary labels corresponding to the cerebrospinal fluid (CSF),
the left and right caudate (constraint #6), and the cortical
gray matter are obtained from the ANIMAL [42,43] pipe-
line output. The lateral ventricles (constraint #3) are seg-
mented using a patch-based segmentation algorithm [45] and
a special template of elderly subjects was used as the prior
allowing more precise segmentation for patients with larger
ventricles. CSF-labeled voxels inside the brain and outside
the ventricles are used to define the critical sulci structures
(constraint #4). Thus, all CSF voxels forming each sulcus
are considered, rather than only the major sulcal lines at the
surface of the cortex, since blood vessels can be located at
any depth within a sulcus. Figure 4a shows an example of
binary segmentation for ventricles, sulci and caudate. Cor-
tical gray matter voxels are linearly scaled according to the
minimal distance to brain surface, yielding a fuzzy dataset
(see Fig. 4b for an example). Hence, a higher risk is given
to cortical gray matter at the bottom of a sulcus than at the
center of a gyrus (constraint #7).

Veins and arteries (constraint #5) are segmented directly
from the patient’s SWI and TOF datasets using a fuzzy vess-
elness measure [46] (see Fig. 4c, d). We chose not to apply a
global threshold to the resulting vesselness datasets. Instead,
the magnitude of vesselness values, at each voxel, is used to
weight the relative importance of large vessels over smaller
ones.

Automatic trajectory planning

The trajectory planning algorithm consists of analyzing every
trajectory linking a set of brain entry points (hard constraints
#1–2) to a DBS target given by the surgeon. Our algorithm is
performed in two passes. A first pass quickly eliminates any

trajectory that crosses through a critical structure or passes
nearby at an unsafe distance (hard constraints #3–4). With
the remaining trajectories, a second pass optimizes the dis-
tance to all critical structures simultaneously (soft constraints
#3–7). A flowchart of the overall algorithm is shown in Fig. 5.

Trajectory modeling

Each trajectory is modeled using a cylinder of interest [33]
with an N - mm radius to account for the dimension of the
insertion tool, the precision of patient-to-image registration,
the possible use of lateral insertion tracks (located 2 mm away
from the central track) during the intraoperative MER stage
and to exclude critical structures already at a safe distance
(above N - mm) without any further processing. The cylin-
der’s radius can be customized for each constraint. We used
a value of N = 5 mm for the computation of all constraints
and N = 2 mm for displaying the trajectories.

The mathematical model defining a trajectory cylinder is
given as follows. Let S be the search space containing all
the trajectories, and �t a specific trajectory (�t ∈ S). Each tra-
jectory �t is a 3D line segment linking an entry point to the
target. Let cyl(�t) be the cylinder of interest centered around �t
and slightly extrapolated (currently, by 5 mm at both ends) to
allow deeper insertions and to avoid missing veins possibly
defined at the surface of the cortex. Let d(�v, �t) the minimal
distance of any voxel �v ∈ cyl(�t) from the trajectory center-
line �t .

Surgical constraints evaluation

The trajectories are first evaluated separately for each sur-
gical constraint. For each critical structure j , a risk value
r j (�v, �t) is assigned to every voxel �v ∈ cyl(�t) such that:
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Fig. 5 Evaluation and
aggregation of all soft
constraints ( j = 3 . . . 7). For
each trajectory, a cylinder of
interest is projected on each
segmented dataset I j
(ventricles, sulci, veins, arteries,
caudate, cortical gray matter)
for calculation of a voxel-wise
risk (see Eq. 1). The maximal
and sum of risks is then
calculated (see Eq. 2) and
normalized for comparison with
other constraints. Finally, an
aggregated trajectory score is
computed according to
surgeon-chosen constraints
weighting

r j (�v, �t) =
{

I j (�v) d(�v, �t) < k1
I j (�v)

k2(d(�v,�t)−k1)+1
d(�v, �t) ≥ k1

, (1)

where I j (�v) is the value of voxel �v in segmented data-
set I j . For binary datasets, I j (�v) is either 0 or 1. Hence,
r j (�v, �t) decreases monotonically with the distance d(�v, �t)
from the cylinder’s centerline. For fuzzy dataset, r j (�v, �t)
also increases monotonically with the voxel value I j (�v). For
example, the risk given to a particular voxel �v ∈ cyl(�t) within
a processed SWI or TOF dataset is computed as a combina-
tion of its distance from the trajectory’s centerline (d(�v, �t))
and its vessel-likeliness value (I j (�v)).

The constant k1 represents the minimal distance at which
r j (

⇀
v, �t) starts decreasing proportionally to d(�v, �t) and k2 rep-

resents the speed at which r j (
⇀
v, �t) will decrease. We used a

value of k2 = 1 for all constraints. A value of k1 = 2 is used
for the ventricle avoidance rule (constraint #3) because any
trajectory that intersects ventricles within a 2- mm radius is
rejected (in the first pass of the algorithm). Similarly, a value
of k1 = 1 is used for the sulci avoidance rule (constraint
#4). A value of k1 = 0 is used for all other soft constraints
(constraints #5–7).

Having computed the risk r j (�v, �t) for all �v ∈ cyl(�t), a vari-
ety of parameters can be extracted. In this work, we compute
the maximal risk and the sum of risk values:

r j,max(�t) = arg max︸ ︷︷ ︸
�v∈cyl(�t)

(r j (�v, �t))

r j,sum(�t) = ∑
�v∈cyl(�t)

(r j (�v, �t))
(2)

Surgical constraints aggregation

The r j,max(�t) and r j,sum(�t) measures are then linearly nor-
malized to a [1-100] discrete scale for comparison with other

Table 1 Weights representing each surgical constraint’s relative impor-
tance were defined with the close collaboration of an expert neurosur-
geon and a senior resident

Constraints Weights
wmax wsum

#3 (ventricles) 0.6 0.0

#4 (sulci) 1.0 0.0

#5a (arteries) 0.4 0.2

#5b (veins) 0.4 0.1

#6 (caudate) 0.0 0.2

#7 (cortical GM) 0.0 0.6

constraints [47] and are denoted r̂ j,max(�t) and r̂ j,sum(�t). A
final trajectory score is computed for all trajectories by aggre-
gating the r̂ j,max(�t) and r̂ j,sum(�t) parameters for all soft con-
straints j using a weighted cost function:

s(�t) =
∑
∀ j

w j,max · r̂ j,max(�t)+
∑
∀ j

w j,sum · r̂ j,sum(�t) (3)

where w j,max and w j,sum are weights defined by the surgeons
to represent the relative importance of each constraint j . A
greater weight is typically given to the max criterion. On the
other hand, the sum criterion is useful when the max cri-
terion does not provide sufficient discrimination among the
trajectories.

Suitable weights for all constraints (summarized in
Table 1) were determined experimentally by the collaborat-
ing neurosurgical team, with the use of custom visualiza-
tion software we developed (see next section). Although this
study used the same set of weights for all subjects, the weights
can easily be personalized according to the surgeon’s prefer-
ence or to the target type (e.g., STN DBS vs. VIM DBS).
Since ventricles and sulci are typically encountered once
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Fig. 6 Patient-specific color-coded maps of individual constraints and
aggregated trajectory risk (second pass of the trajectory planning algo-
rithm). Constraints #3 and #6 (not shown) essentially eliminates tra-
jectories that are too medial. Constraints #4 and #7 are used to guide
trajectory selection toward the center of a gyrus. Constraint #5 allows

fine adjustment to the trajectory selection according to the patient-
specific brain vasculature. The final aggregation map (also showing the
best-ranked trajectory) provides an intuitive interface for visualization
of recommended trajectories

during the course of a trajectory (near the entry for sulci
and near the target for the ventricles), only the r̂max cri-
terion is considered for constraints #3 and #4. Weights
for constraint #5 are defined separately for veins (SWI
datasets) and arteries (TOF datasets) and they include a
mixture of the r̂max and r̂sum criteria. For constraints #6
and #7, only the r̂sum criterion is considered. For those
specific constraints, the r̂max criterion does not provide
sufficient discrimination of the trajectories. Indeed, most
trajectories pass near the caudate and all trajectories must
intersect some amount of gray matter upon entering the
brain.

Clearly, vessel avoidance is a major concern during tra-
jectory planning and consequently occupies most of the
weighted cost function s(�t). In our work, vessel avoidance
is robustly implemented via the aggregation of sulci-related
constraints (constraint #4 and, to some extent, constraint
#7) and the analysis of dense SWI and TOF datasets (con-
straint #5). Figure 6 shows an example of the computed risk
before and after constraints aggregation. Constraints #4 and
#7 essentially guide the trajectory selection toward the cen-
ter of gyri and away from sulci (all along the trajectory)
while constraint #5 allows fine trajectory adjustments based
on patient-specific vascular data.

DBS planning framework

We developed an easy-to-use graphical user interface allow-
ing surgeons to experiment with our computer-assisted tra-
jectory planning framework. A screenshot of the application
is shown in Fig. 7. Our software uses the insight segmenta-
tion and registration toolkit (ITK) [48], for the analysis of
trajectories, and the visualization toolkit (VTK) [49] for 2D
and 3D visualization of the trajectories.

The trajectory planning algorithm outputs an ordered
ranking of low-risk (recommended) entry points, listed on
the bottom-left pane of the application. These recommended
entry points tend to cluster as few well-delimited patches.
These patches are shown (in green) on the 3D viewing pane,
which renders a color-coded map of the processed trajecto-
ries overlaid on a 3D reconstructed brain using volumetric
ray casting (VTK implementation). The 2D triplanar views
are used for slice-by-slice dataset visualization and allow
inspection of specific trajectories, shown as a 2- mm radius
cylinder projection with a customizable opacity level.

Following the automatic trajectory analysis, the surgeon
can examine a few of the best-ranked trajectories sequen-
tially. The surgeon can also coarsely position the trajectory
cursor to a specific low-risk area (e.g., within a green patch)
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Fig. 7 Graphical user interface for trajectory planning and visualiza-
tion. Figure annotation: (1) volume rendering of the brain, (2) color-
coded map of entry points (most recommended trajectories are shown

as small green patches), (3) interactive cursor for trajectory selection
and (4) triplanar visualization of the selected trajectory shown as a
2- mm radius cylinder

Table 2 Breakdown and
classification of major DBS
planning tasks impacted by the
use of the proposed framework

DBS planning task Stage Level of automation Processing time

MRI acquisition Preoperative Manual 40 min

Image processing Preoperative Automatic <2 h

Target identification Intraopeartive Manual (Unchanged)

Surgical constraints evaluation Intraoperative Automatic <20 s

Surgical constraints aggregation Intraoperative Automatic or semi-automatic <1 s

on the interactive 3D viewing window. Our software can
then automatically generate a sub-ranking of all trajecto-
ries within that patch, up to a user-defined search angle, and
identify the local minima within that patch. This search tool
can be used to efficiently examine recommended trajectories
among different patches and to exclude specific patches due
to other planning considerations not covered by the imple-
mented constraints.

The proposed framework can be integrated with the
overall surgical workflow as a decision-support system that

provides neurosurgeons with value-added visual feedback
during DBS planning. Table 2 summarizes the major plan-
ning tasks involved using the proposed framework. These
tasks are classified according to the stage at which they occur
(preoperative or intraoperative) and the level of automation
(automatic, semi-automatic or manual). Preoperative tasks
are less time sensitive as they are typically executed the
day before the surgery. Intraoperative tasks are time sensi-
tive as they are executed within the operating room. Tasks
that require no user interaction are classified as “automatic”.
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Tasks that require some user interaction for each case are
classified as “semi-automatic”. Tasks that are unmodified
with respect to conventional clinical routines are classified
as “manual”.

Our framework integrates most optimally with the work-
flow of a frameless DBS approach where the patient can
undergo preoperative MRI at least 1 day before surgery. This
is due to the processing time required for image segmenta-
tion and registration. In our center, preoperative MRI acqui-
sition is typically performed prior to the surgery without the
stereotactic frame. These preoperative images are uploaded
to a frameless IGNS platform (Medtronic StealthStationR)
used for preoperative planning. A neuronavigation technician
post-processes the preoperative MRI to segment the brain
cortex and surface blood vessels using image intensity thres-
holding and manual drawing tools offered on the IGNS plat-
form, which are reviewed by the neurosurgeon. In this work,
we substituted the use of gadolinium contrast MRI with a
novel multi-modal MRI protocol, described in section “MRI
acquisition”. Furthermore, we developed an automatic image
processing pipeline that requires no user interaction and that
automates the preprocessing segmentation and registration
steps described in section “Image processing”.

During surgery, frameless stereotaxy based on the preop-
erative MRI scan is used to evaluate suitable trajectories to
the target. To do so, the surgeon interactively selects the target
point and manually examines a few possible trajectories on
the IGNS platform using 3D, triplanar and probe’s eye views.
A marker is placed on the patient’s head at the entrance of the
chosen trajectory indicating where to perform the burr hole.
Using our framework, the target identification task remains
unchanged. Our graphical user interface allows interactive
target identification from direct visualization of the co-
registered T1w and T2w datasets. Alternately, the target
coordinates can also be passed to the software if a third-party
targeting method is used. The only change to the intraoper-
ative surgical workflow consists of executing the automatic
trajectory planning algorithm, which provides intuitive repre-
sentation of suitable insertion areas to facilitate the final deci-
sion-making. The surgical constraints evaluation requires no
user initialization and a multi-threaded implementation exe-
cutes in less then 20 s for a search space of over 8,000 trajec-
tories on a general purpose personal computer (quad core,
2.66 GHz, 4 GB RAM) running Linux. The surgical con-
straints aggregation executes in less then 1 s, thus allowing
the surgeon to generate alternate plans, semi-automatically
using different constraints weights, in a timely manner. In
this study, a fixed set of weights were used for all patients.

It should be noted that our framework can also be inte-
grated with the workflow of a frame-based DBS approach as
long as preoperative imaging datasets are accessible prior to
the surgery for the image preprocessing tasks. The processed
datasets can then be linearly aligned within few minutes to

the MRI dataset exhibiting the stereotactic frame typically
acquired at the beginning of the surgery. Furthermore, the
neurosurgeon remains in control of the final choice of inser-
tion trajectory.

Experiment

Validation methodology

The goal of computer-assisted trajectory planning is two-
fold: to improve the efficiency of preoperative planning but,
more importantly, to propose safer alternatives to the surgeon.
This latter goal poses key validation challenges because, in
absence of a ground truth, it is difficult to assess whether auto-
matic methods yield superior trajectory planning, in compar-
ison with the manual protocol. In some related works (e.g.,
[21,28]), trajectories are validated qualitatively, by experi-
enced neurosurgeons, from manual inspection of the trajec-
tories or via small questionnaires. In other studies [10,29,33],
a numerical comparison is performed to show how automat-
ically computed trajectories yield better optimization scores
of the defined surgical constraints than the manual trajecto-
ries. This validation method makes a fundamental assump-
tion that surgeons attempt to optimize the same set of surgical
constraints, and only those constraints, during their manual
planning protocol.

Our work is validated with a retrospective, in-depth anal-
ysis of recent DBS planning cases, with the motor part of
the STN as the target because it is arguably the most preva-
lent target for PD patients with severe rigidity. We first ran
a conventional numerical analysis to compare the risk val-
ues between our automatically planned trajectories (Tauto)

and the actual surgical trajectories planned manually by the
surgeon (Tmanual). Then a qualitative evaluation of the tra-
jectories returned by our framework was performed by two
neurosurgeons with DBS expertise to assess whether these
computed trajectories are suitable for surgery.

Patients

Eight PD patients with severe rigidity symptoms (4 males, 4
females; age, 46–67) volunteered to participate in this study
after providing an informed consent. The implants were bilat-
eral for 6 subjects and unilateral for 2 subjects, for a total of 14
planning cases. This study was approved by the research eth-
ics committee of the Montreal Neurological Institute (MNI).
Each patient underwent three separate MRI scanning ses-
sions as follows:

1. Preoperative T1w, SWI and TOF datasets were acquired
at 3 T and were linearly registered according to the
MRI protocol described in section “MRI acquisition”.
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Table 3 Comparison between
automatic and manual planning
(in parenthesis) for all 14 cases.
The individual scores for each
soft constraint are normalized to
a scale of [1–100] for
comparison with other
constraints

Case # Constraint

#3 (ventricles) #4 (sulci) #5a (TOF) #5b (SWI) #6 (caudate) #7 (GM)

r̂max r̂max r̂max r̂sum r̂max r̂sum r̂sum r̂sum

#1 1 (1) 2 (38) 16 (17) 3 (2) 29 (23) 47 (15) 57 (33) 14 (64)

#2 1 (1) 2 (48) 18 (52) 3 (9) 1 (2) 27 (19) 37 (17) 10 (9)

#3 1 (1) 2 (88) 10 (14) 7 (21) 24 (24) 20 (85) 1 (5) 14 (94)

#4 1 (89) 1 (71) 10 (19) 5 (18) 8 (45) 15 (57) 2 (72) 1 (55)

#5 1 (1) 1 (80) 1 (33) 1 (3) 1 (17) 6 (7) 27 (22) 5 (76)

#6 1 (1) 8 (64) 1 (43) 1 (10) 11 (19) 3 (6) 5 (14) 1 (81)

#7 1 (1) 1 (1) 1 (1) 1 (1) 6 (6) 6 (6) 2 (2) 2 (2)

#8 1 (95) 5 (18) 19 (16) 24 (18) 19 (32) 9 (10) 1 (52) 6 (52)

#9 1 (1) 1 (20) 1 (9) 1 (2) 2 (3) 12 (26) 8 (8) 6 (11)

#10 1 (–) 1 (–) 14 (–) 2 (–) 8 (–) 3 (–) 11 (–) 3 (–)

#11 1 (1) 1 (27) 27 (16) 8 (3) 8 (19) 18 (35) 6 (22) 6 (11)

#12 1 (1) 2 (9) 19 (21) 41 (32) 8 (11) 5 (4) 2 (6) 2 (13)

#13 1 (1) 8 (8) 17 (24) 10 (5) 3 (10) 21 (4) 3 (1) 5 (9)

#14 1 (1) 1 (80) 1 (1) 1 (7) 4 (14) 4 (22) 2 (21) 2 (33)

Avg. 1 (15) 3 (42) 11 (20) 8 (10) 9 (17) 14 (23) 12 (21) 6 (39)

These datasets were used for evaluating the proposed
automatic trajectory planning method.

2. A preoperative T1w-Gd dataset was acquired at 1.5 T
as part of the patient’s regular clinical treatment. This
dataset was used by the neurosurgeon to plan the DBS
lead insertion after manual evaluation on triplanar, tra-
jectory and probe’s eye views provided on the Medtronic
StealthStationR planning platform. This dataset is line-
arly registered to the 3 T T1w dataset (affine: 9 parame-
ters, cost function: cross-correlation).

3. A postoperative T1w MRI was acquired on at 1.5 T
as part of the patient’s regular clinical treatment. This
dataset exhibits the final position of the inserted elec-
trode and DBS lead and is linearly registered to the 3 T
datasets (rigid body: 6 parameters, cost function: cross-
correlation).

Identification of Tauto and Tmanual

For all DBS cases, the target point coordinates were identified
by an experienced neurosurgeon using the registered postop-
erative and pre-operative T1w datasets. These target points
were passed to our automatic planning framework and best-
ranked trajectories (Tauto) generated by our algorithm were
kept for the comparison.

The coordinates of the real entry points, corresponding to
the manually planned trajectories (Tmanual), were then esti-
mated from the postoperative MRI. However, it was challeng-
ing to obtain a precise estimate of Tmanual while taking into
account the possible registration errors and geometric distor-

tions caused by the presence of the lead and, more impor-
tantly, errors due to postoperative electrode bending caused
by the removal of the stylet and guide tubes at the end of the
surgery. We estimated the lead orientation as a straight line
linking two points, manually identified by the neurosurgeon,
along the observed trajectory. These points were precisely
chosen within the trajectory segment that remains straight
post-surgery. The first point was selected at the bottom of
the multi-contact electrode. The second point was selected
along the trajectory and was separated by at least 3 cm to
minimize extrapolation errors. We then extrapolated the tra-
jectory to the brain surface. For the numerical comparison of
section “Quantitative evaluation”, we compensated for pos-
sible inaccuracies in the estimation of Tmanual by retrieving
the trajectory with the smallest aggregated risk (as computed
by our planning algorithm) within a ±1.0◦ range of Tmanual.
For the qualitative comparison of section “Qualitative eval-
uation,” the collaborating neurosurgeons evaluated Tmanual

using both the reconstructed trajectory on preoperative data
and the actual path taken by the electrode directly visualized
on postoperative MRI. The later step safeguards against any
possible errors introduced by trajectory reconstruction and
image registration.

Results

Quantitative evaluation

For all 14 DBS insertions, constraint-specific risk values were
extracted and a comparison of the optimization achieved with
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Table 4 Minimal distance to ventricles and sulci for Tauto and Tmanual

Case # Dist. to ventricles (mm) Dist. to sulci (mm)

Tauto Tmanual Tauto Tmanual

#1 >5.0 >5.0 3.7 1.9

#2 >5.0 >5.0 4.6 1.7

#3 >5.0 >5.0 3.3 1.8

#4 >5.0 2.2 4.1 1.3

#5 >5.0 >5.0 4.0 1.2

#6 >5.0 >5.0 3.5 1.4

#7 >5.0 >5.0 4.7 4.7

#8 >5.0 2.1 3.5 2.6

#9 >5.0 >5.0 4.0 2.5

#10 >5.0 – 4.2 –

#11 >5.0 >5.0 4.5 2.4

#12 >5.0 >5.0 4.2 3.4

#13 >5.0 >5.0 3.4 3.4

#14 >5.0 >5.0 4.9 1.2

Avg. >5.0 4.6 4.0 2.3

Tauto and the estimated Tmanual is shown in Table 3. For case
#7, Tauto falls inside the range of uncertainty of Tmanual and
therefore both trajectories are considered identical. Risk val-
ues for Tmanual of case #10 are not available because the
trajectory was posterior to the search space (defined by sur-
gical constraint #1). Table 4 shows the minimal distance (in
millimeters) to the sulci and ventricles binary structures.

Clearly, the computed trajectories generally exhibit
smaller risks (a relative measure of how well a particular
constraint is met in comparison with other possible trajec-
tories) than the manual trajectories, simultaneously for each
surgical constraint taken separately. Furthermore, constraints
with higher weights receive more optimization and have less
fluctuation in their score from one case to another. For exam-
ple, constraints #3, 4 and 7 (ventricle, sulci, and cortical gray
matter) always exhibit a risk inferior to 20 (out of 100) and
most often inferior to 10 (out of 100).

Our automatic solution tends to return trajectories well
within the middle frontal gyrus (a region of the frontal lobe
that encompasses several smaller gyri commonly used for
STN DBS) that optimally satisfy the ventricle avoidance rule
(minimum distance >5 mm even for cases with larger ventri-
cles) and in many cases the caudate rule as well. On the other
hand, few manually planned trajectories entered the brain
in more medial patches of the middle frontal gyrus region,
yielding trajectories closer to the ventricles (e.g., case #4 and
#8).

The minimal distance to sulci is always above 3 mm and
sometimes above 4 mm for all automatic trajectories. With
the integration of constraint #7, even very narrowed sulci
that are sensitive to partial volume effects can be avoided.

Figure 8 shows an example of an automatically planned tra-
jectory that enters the brain at the center of a gyrus and also
avoids neighboring sulci along its entire course to the STN.

Regarding the avoidance of SWI and TOF detected blood
vessels, some improvements to the optimization of risk val-
ues is generally observed, especially since only major blood
vessels, visible on gadolinium enhanced T1w dataset, are
avoided using the manual protocol. As shown in the example
of Fig. 9 (for case #4), the integration of SWI–TOF to our
framework can yield automatically planned trajectories that
better avoid subcortical veins with minimal impact to other
constraints.

Qualitative evaluation

The previous section showed that Tauto generally improves
the simultaneous optimization of a well-defined set of surgi-
cal constraints, but does not show whether Tauto fully mim-
ics the surgeon’s decision-making process and whether it is
suitable for surgery. Furthermore, it does not show whether
Tauto is truly optimal or simply over-fitted to imperfections in
the raw and segmented datasets due to considerable motion
sometimes visible in the PD patients’ MRI data. Hence, for
all 14 DBS insertions, Tauto and Tmanual were qualitatively
evaluated by two neurosurgeons with DBS expertise. To do
so, the multi-modal 3 T MRI datasets (T1w, SWI, TOF) used
for the automatic trajectory analysis, as well as the clinical
preoperative (T1w-Gd) and postoperative MRI for which the
surgeons are most familiar with, were uploaded to our visu-
alization software.

Without performing a comprehensive qualitative analy-
sis, which would have been outside the scope of this paper,
the surgeons were asked to navigate, slice-by-slice, through
Tauto and Tmanual on the various imaging contrasts avail-
able. The surgeons first evaluated Tauto on the co-registered
multi-modal 3 T MRI (T1w, SWI, TOF) on the co-registered
clinical T1w-Gd dataset for confirmation and were asked to
comment whether Tauto is suitable for surgery. Then, the sur-
geons evaluated Tauto and Tmanual on those same datasets and
were asked to comment whether they consider Tauto a prefer-
able alternative to Tmanual. To exclude possible inaccuracies
in the estimation of Tmanual from interfering with the com-
parison, the surgeons also evaluated Tmanual directly on the
postoperative MRI to confirm their assessment.

Table 5 summarizes the surgeons’ analysis for each case.
All 14 cases automatically planned by our software were
judged suitable for surgery. In 5 cases (case #2, 4, 8, 10, 14),
Tauto was judged a significant improvement over Tmanual by
both neurosurgeons. In 8 other cases, (case #1, 5–7, 9, 11–13)
Tauto was judged equivalent or preferable to Tmanual.

For case #3, both surgeons expressed a slight preference
for Tmanual even though Tauto was judged suitable and seemed
to improve the optimization of the sulci constraints. For this
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Fig. 8 Few transverse slices of the automatic trajectory (Tauto) for case
#4. The intersection of the probe path with the transverse slice is shown
as a small purple dot (arrow). This example shows how the combination

of constraints #3 and #7 yields a trajectory that stays at a safe distance
from the sulci along the entire path

specific case, a concern was raised because Tauto was pos-
terior to Tmanual, although still within the pre-motor cortex
(middle frontal gyrus) and anterior to Tmanual of another case
(case #10). This observation suggests that surgeons prefer
more anterior entry points whenever allowed by other con-
straints.

For case #12, Tauto was judged suitable but one surgeon
expressed a minor concern regarding its proximity to a sur-
face vein visualized well on the clinical T1w-Gd dataset.
As opposed to arteries, surface veins do not follow the sul-
cal patterns and must be adequately planned for to pre-
vent risk of venous infarction. In our framework, veins are
primarily imaged using the SWI acquisition yielding dark
blood. Automatic segmentation of dark surface veins is some-
what challenging since CSF surrounding the cortex is also
dark. Consequently, surface veins do not entirely match
the tubular structure assumption posed by the use of con-
ventional vesselness filter [46] and therefore admit lower
vessel-likeliness values in comparison with subcortical veins.
However, this limitation did not seem to affect the global
quality of Tauto for the 14 cases presented in this work.

For case #5, our software detected that Tmanual was almost
intersecting a sulcus (see Table 4). However, this observa-
tion is less obvious when visualizing Tmanual on the post-
operative MRI. Indeed, because a rigid-body transformation

Fig. 9 Avoidance of subcortical venous blood vessel for case #4 using
automatic (Tauto) and manual (Tmanual) trajectory planning

was used to register the postoperative MRI (the only viable
option due to the distortion caused by lead implant), changes
in the gyral patterns, caused by postoperative brain shifts,
were not always adequately aligned. This shows that, for the
sulci avoidance constraint, a numerical comparison alone is
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Table 5 Qualitative comparison of manual (Tmanual) and automatic (Tauto) trajectories by two neurosurgeons with DBS expertise (referred as S1
and S2)

Case Tauto validity Preferred trajectory Qualitative description of Tauto and Tmanual

S1 S2 S1 S2

#1 Yes Yes Eq. Tauto Tauto and Tmanual are separated by an angle of 6.1◦ and have similar characteristics. Both
trajectories avoid the ventricles, sulci and surface veins. Both trajectories have some
overlap with the caudate and, in both cases, is considered a minor issue

#2 Yes Yes Tauto Tauto Tauto and Tmanual are separated by an angle of 5.2◦. Both trajectories avoid ventricles,
caudate and surface veins. Tauto avoids sulci and even cortical gray matter along sulci

#3 Yes Yes Tmanual Tmanual Tauto and Tmanual are separated by an angle of 21.6◦ and are entering the brain through
different gyri. Tmanual is more anterior than Tauto. Both trajectories avoid the ventricle
and caudate. Tmanual is closer to a sulcus

#4 Yes Yes Tauto Tauto Tauto and Tmanual are separated by an angle of 15.7◦ and Tmanual is more medial than
Tauto. Tmanual enters the caudate and the subependymal wall of the lateral ventricles.
Tauto fits all criteria of ventricle, caudate, sulci and surface veins

#5 Yes Yes Eq. Eq. Tauto and Tmanual are separated by an angle of 9.1◦. Tauto fits all criteria of ventricle,
caudate, sulci and surface veins. Tmanual seems closer to a sulcus

#6 Yes Yes Eq. Tauto Tauto and Tmanual are separated by an angle of 4.5◦ and have similar characteristics. Both
trajectories avoid ventricles, caudate and surface veins. Tauto approaches a sulcus once
at a safe distance. Tmanual is slightly closer to that same sulcus

#7 Yes Yes Eq. Eq. Tauto and Tmanual are separated by an angle of 0.9◦ and are considered identical since
Tauto is inside the range of uncertainty associated with Tmanual. Both trajectories fit all
criteria of ventricle, sulci, caudate and surface vein avoidance

#8 Yes Yes Tauto Tauto Tauto and Tmanual are separated by an angle of 13.9◦. Tmanual enters the subependymal
gray near the lateral ventricles and abuts on a sulcus without crossing it. Tauto fits all
criteria of ventricle, sulci, caudate and surface veins

#9 Yes Yes Eq. Eq. Tauto and Tmanual are separated by an angle of 2.0◦ and are therefore very similar. Tmanual
enters the subependymal gray near the lateral ventricles and abuts on a sulcus without
crossing it. Tauto fits all criteria of ventricle, sulci, caudate and surface veins perfectly

#10 Yes Yes Tauto Tauto Tauto and Tmanual are separated by an angle of 16.2◦. Tmanual enters the subependymal
wall, too close to the lateral ventricles, and is posterior to the search space delimited
with constraint #1. Tauto is still slightly posterior but within the allowed search space.
Tauto fits all criteria of ventricle, sulci, caudate and surface veins even if patient has
cortical atrophy and enlarged sulci

#11 Yes Yes Eq. Tauto Tauto and Tmanual are separated by an angle of 4.2◦ and share similar characteristics.
Tauto fits all criteria of ventricles, caudate, sulci and surface vein avoidance

#12 Yes Yes Eq. Tauto Tauto and Tmanual are separated by an angle of 3.9◦ and share similar characteristics. Tauto
fits all criteria of ventricles, caudate, sulci. However, Tauto comes close to a surface
vein (visible on the T1w-Gd dataset)

#13 Yes Yes Eq. Eq. Tauto and Tmanual are separated by an angle of 27.7◦. Both trajectories fit all criteria of
ventricles, caudate, sulci and surface veins avoidance. Tmanual is more posterior but it
was not considered an issue

#14 Yes Yes Tauto Tauto Tauto and Tmanual are separated by an angle of 5.4◦. Tauto fits all criteria of ventricles,
caudate, sulci and surface veins avoidance. Tmanual abuts the bottom of a sulcus. Tauto
improves avoidance of cortical gray matter along the same suclus

not sufficient and may underestimate the quality of Tmanual

for cases with significant bending of the lead.
In this study, Tauto was selected automatically as the trajec-

tory with the absolute lowest score (i.e., the global minima)
because our research objective was to design a DBS plan-
ning framework that necessitates the least amount of user
interaction. Based on the results of Table 5, there were cases
where Tauto and Tmanual belong to the same patch and cases
where Tauto and Tmanual belong to different patches (within
the middle frontal gyrus). For example, Tauto and Tmanual

for cases #3, 4, 8, 10, 13 are each separated by more then
15◦. We could have used an alternate low-risk trajectory that

is closer to Tmanual for the comparison since, as explained
in section “DBS planning framework”, our software is also
capable of retrieving the local minima within the neighbor-
hood of a given trajectory (i.e., Tmanual) but, interestingly, for
3 of these cases (cases #4, 8, 10), both surgeons retrospec-
tively preferred our Tauto proposal over the surgically chosen
Tmanual.

While both the manual and automatic methods are
suitable for DBS planning, the automatic method tends to
qualitatively improve the simultaneous avoidance of many
critical structures and allows the neurosurgeon different
options that can then be evaluated in an efficient manner.
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Hence, the automatic approach reduces the cognitive work
to a set of recommended trajectories that are easy to navigate
with our user interface.

Discussion

This work proposes a decision-support system for assisting
the neurosurgeon during the preoperative planning phase of
DBS neurosurgery. Our framework is capable of analyz-
ing a large number of trajectories simultaneously against
many surgical constraints defined across multi-modal imag-
ing datasets. Trajectories are ranked according to a weighted
cost function of the surgical constraints and a software
application was developed to allow easy integration of com-
puter-assisted trajectory planning within the global surgical
workflow, thus providing neurosurgeons with value-added
information to facilitate their decision-making. We retrospec-
tively validated our framework on a cohort of Parkinson’s
patient, using the STN as the target, although the imple-
mented constraints were generically designed and can also
be applied to other DBS targets.

A retrospective comparison revealed that automatic
planning tends to improve the optimization of many
neurosurgeon-chosen constraints, mostly because thousands
of trajectories can be analyzed in less then 20 s whereas only
few trajectories can be evaluated using the manual approach
in a reasonable amount of time. However, automatic methods
are typically limited to the optimization of a pre-defined set of
constraints, hence disregarding potentially undescribed con-
straints that can interplay with the surgeon’s decision-mak-
ing. Furthermore, trajectories are most probably optimized
based on non-ideally segmented critical structure datasets.
Hence, a qualitative evaluation, by two neurosurgeons with
DBS expertise, was necessary to further validate the pro-
posed trajectories. For all cases, the automatically recom-
mended trajectory was judged suitable upon evaluation by
the neurosurgeon.

Our framework made use of relatively new MRI modal-
ities that provide dense and separate datasets for venous
and arterial blood vessels visualization. The total scan time
associated with this new MRI protocol is about 40 min, which
may be long for elderly PD patients. Various strategies are
available to reduce the additional 25 min required for SWI
and TOF acquisition. First, it is possible to reduce the num-
ber of slices to only cover the volume from outside of the head
to the basal ganglia. Second, it is possible to slightly increase
the slice thickness of the SWI acquisition since this particular
sequence benefits from anisotropic resolution for capturing
veins with arbitrary orientation [50]. If no additional scan
time is available for the SWI and TOF acquisitions, it remains
possible to apply constraint #5 to vessel information found
on a clinical T1w-Gd dataset. The multi-modal datasets were

acquired within a single scanning session and were aligned
using linear (rigid-body) registration. Nonlinear registration
could have been used to account for geometric distortions but
it was not found necessary on the overall group of patients.
Furthermore, in section “Qualitative evaluation”, the neu-
rosurgeons cross-validated the computed trajectories on a
co-registered clinical T1w-Gd dataset where blood vessels
are imaged as part of the T1w navigation scan.

We decided to model the insertion lead as a volumetric
cylinder of interest that intersects the segmented datasets
directly, rather than the conventional approach of a straight
line that samples a pre-calculated distance map. While the
latter is computationally efficient, our model offers several
advantages. First, a cylinder model is more representative of
the physical lead used for the insertion and it implicitly acts
as a safety buffer to account for the multiple insertions per-
formed during the MER stage. Second, the computation of
distance maps is highly sensitive to false positive voxels over
large clusters representing true critical structures [33]. Third,
our model can be applied efficiently on fuzzy datasets, which
enables the implementation of complex rules and the inte-
gration of SWI and TOF datasets without the use of a global
threshold. Fourth, this approach prevents over-fitting for one
specific constraint, because the analysis is locally applied
within the cylinder of interest. For example, if a trajectory is
already 5- mm away from the ventricles, the optimizer should
concentrate on the remaining constraints, rather than search-
ing for a trajectory that avoids the ventricles beyond that
distance. The use of a cylinder model remains fast and the
trajectory analysis is usually completed in less than 20 s using
the search space defined by constraint #1 and high-resolution
datasets (1×1×1- mm for the T1w and TOF and 0.5×0.5×
1- mm resampled to 0.5 × 0.5 × 0.5- mm isotropic for the
SWI).

As with manual trajectory planning, our framework com-
putes linear lead trajectories based on preoperative MRI with-
out taking into account possible occurrence of intraoperative
brain shifts. These brain shifts can be minimized with surgical
technique improvements that are complementary to the pro-
posed framework. For example, some studies reported that
MRI-based STN targeting may eliminate the need for pro-
longed MER process, which can significantly reduce brain
shifts caused by CSF egress [51] and can also reduce the
risk of hemorrhagic complications in comparison with the
overall 5.0 % hemorrhagic incidence in functional neurosur-
gery [52]. Alternately, the Interactive Brain Imaging System
(IBIS) [53] prototype neuronavigation platform addresses
surgical navigation issues related to brain shift via intra-
operative freehand ultrasound measurements used to update
patient-to-preoperative image alignment. We are currently
integrating our trajectory planning algorithm to the IBIS
platform. Thus, for surgical techniques requiring multiple
MER penetrations, our automatic trajectory analysis could
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be executed before each penetration (in less then 20 s) using
updated preoperative MRIs and could potentially assist the
neurosurgeon toward his choice of lateral track for the next
penetration.

Regarding the choice of implemented surgical constraints,
our framework integrates common constraints found in other
related work. The constraints found in Brunenberg et al.’s
work [28] and Shamir et al. [29] are exactly covered by our
constraints #1–5 although our technique is applied to denser
SWI–TOF datasets. However, we added new constraints, for
minimizing the overlap with the caudate and deep corti-
cal gray matter, based on previous findings [33]. The work
Essert et al.’s [10] also introduced geometric constraints to
the trajectory length and orientation. These constraints are
indirectly achieved by our framework with the restriction
posed on the search space (constraints #1 and #2). How-
ever, no minimization of the path length occurs inside the
allowed search space because a slightly longer but safer path
is preferred to a shorter but riskier path. Furthermore, once
inside the allowed search space, we decided not to pose
further optimization to the electrode orientation because,
as shown earlier in Fig. 1, we observed important varia-
tions in the choice of insertion angles across multiple sub-
jects. Overall, the surgical constraints presented in this work
were defined to minimize risks of surgical complications
related to electrode insertion. With the increasing number
of available contacts on new generations of lead models,
DBS with multiple active contacts and multiple targets may
yield new trajectory planning requirements to address stim-
ulation-related complications preoperatively, before making
the burr hole. For example, optimizing the lead orientation
may become key for maximizing the overlap between the
extracellular electric field and the shape of targeted struc-
tures while concurrently minimizing the spread of electric
field into the internal capsule, the oculomotor nerve root
and other white matter structures for prevention of stimu-
lation side effects (e.g., muscle contraction, diplopia, etc.).
These new requirements can be gradually incorporated into
our generically designed path planning framework as they are
discovered to interplay with the surgeon’s decision-making.

During our experiments, we noted the neurosurgeon’s
interest in examining multiple insertion alternatives based
on our computed trajectory ranking. This particular behav-
ior could simply mean that an absolute optimal trajectory
does not exist. Instead, many suitable trajectories may exist,
each consisting of a trade-off among competing factors. With
our set of implemented constraints, the recommended trajec-
tories are typically distributed in multiple, well-delimited,
patches of low-risk entry points rather than a single smooth
patch with one local minimum. Thus, the surgeon can always
examine the alternate low-risk trajectories, by jumping to a
different insertion zone (e.g., in another gyrus that the sur-
geon is more comfortable with), in a timely matter using the

visualization software presented in section “DBS planning
framework”.

We found it challenging to determine an optimal choice
of weights for the different surgical constraints. The set
of constraints and their optimal weighting may depend
upon the surgeon and even the targeted nuclei. It could be
interesting to investigate the concept of Pareto-optimality
[54], used by Seitel et al. [55] for computer-assisted plan-
ning of radiofrequency ablation image-guided surgery. This
principle yields computation of a Pareto-frontier map that
encompasses all trajectories where there is no other trajectory
that scores better for one constraint without scoring worse
for any other constraint. As observed by Essert et al. [10],
any trajectory optimized using a weight-based cost function
will lie on the Pareto-frontier. Our software currently allows
semi-automatic exploration of other Pareto-optimal points
simply by changing the weights, which re-runs the constraint
aggregation step and updates the color-coded map of recom-
mended entry points in less then a second. Clearly, the Pareto-
optimality principle can become a useful tool for studying
different weighting patterns. For clinical use, it may be more
intuitive to let the surgeon specify the relative importance of
the surgical constraints and to recommend trajectories that
were aggregated accordingly.

Overall, manual path planning, especially with dense
multi-modal datasets, is a complex and lengthy process that
yields subjective and possibly sub-optimal solutions. This
work provides neurosurgeons with an intuitive tool that
allows objective and patient-specific optimization of DBS
lead trajectories, which may improve insertion safety and
reduce surgical time. Although it is applied here to insertion
of deep brain stimulation leads, the framework can be gener-
alized to a wide variety of intracranial procedures, includ-
ing trajectory planning for biopsies, endoscopy, insertion
of depth electrodes and approach corridors to deep-seated
tumors. Future work will concentrate on improving our SWI
sequence to enhance the contrast between surface veins and
CSF, and to improve their automatic segmentation. Further-
more, we will integrate our new framework with the overall
surgical workflow for planning future DBS cases within the
context of a prospective study.
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