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A new improved version of the realistic digital brain phantom
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Image analysis methods must be tested and evaluated within a

controlled environment. Simulations can be an extremely helpful tool

for validation because ground truth is known. We created the digital

brain phantom that is at the heart of our publicly available database of

realistic simulated magnetic resonance image (MRI) volumes known as

BrainWeb. Even though the digital phantom had l mm3 isotropic voxel

size and a small number of tissue classes, the BrainWeb database has

been used in more than one hundred peer-reviewed publications

validating different image processing methods.

In this paper, we describe the next step in the natural evolution of

BrainWeb: the creation of digital brain phantom II that includes three

major improvements over the original phantom. First, the realism of

the phantom, and the resulting simulations, was improved by modeling

more tissue classes to include blood vessels, bone marrow and dura

mater classes. In addition. a more realistic skull class was created. The

latter is particularly useful for SPECT, PET and CT simulations for

which bone attenuation has an important effect. Second, the phantom

was improved by an eight-fold reduction in voxel volume to 0.125 mm3.

Third, the method used to create the new phantom was modified not

only to take into account the segmentation of these new structures, but

also to take advantage of many more automated procedures now

available. The overall process has reduced subjectivity and manual

intervention when compared to the original phantom, and the process

may be easily applied to create phantoms from other subjects.

MRI simulations are shown to illustrate the difference between the

previous and the new improved digital brain phantom II. Example

PET and SPECT simulations are also presented.

D 2006 Elsevier Inc. All rights reserved.

Introduction

Image processing methods need evaluation data sets to

characterize, evaluate and optimize their performance. Three main

types of evaluation data sets can be distinguished: real acquisitions

of subjects, real acquisitions of physical phantoms and simulations

from numerical phantoms. By using real acquisitions, the whole

acquisition set up is taken into consideration. Although physical

phantoms can provide a gold standard because the ground truth of

the object is perfectly known, the data obtained have unrealistic
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complexity due to the limited number of compartments that they

include. Unlike physical phantom acquisitions, subject acquisitions

have a realistic complexity, but the ground truth is not available.

Simulations provide a way of generating data where ground truth is

known and where realistic complexity may be taken into account

when a realistic numerical phantom used as input to the simulator

and the simulator reproduces the physics of data generation.

Contrary to the real acquisitions, the contributions of errors from

different sources in acquisition can be separated and evaluated

independently. Simulations allow the control of various acquisition

parameters, whereas real acquisitions are limited to the types of

scan acquired (parameters, slice thickness. . .). Since some subtle

real effects may not be included in simulations, these simulations

are not sufficient to evaluate image processing methods. However,

the known ground truth and the realistic complexity of the

simulated data allow the simulations to be an extremely helpful

tool during the process of method evaluation.

A set of realistic simulated anatomical brain magnetic

resonance imaging (MRI) volumes, known as BrainWeb, is

available to the neuroimaging community1. It is also possible for

external groups to customize the simulator parameters, run the

simulator on our computer system and download the resulting 3D

MR simulations along with the digital phantom. These simulations

have been used by more than one hundred external groups, e.g.

Grabowskia et al. (2000), Arnold et al. (2001), Schnack et al.

(2001), Cardenasa et al. (2001) and Tzourio-Mazoyer et al. (2002).

These groups have incorporated these simulations to study the

performance of techniques such as non-linear co-registration,

cortical surface extraction, correction of MRI intensity non-

uniformity and tissue classification. For example, Arnold et al.

(2001) used the database to study six different algorithms for the

correction for MRI intensity non-uniformity.

These MR simulations, and simulations of different modalities

as positron emission tomography (PET) and single photon emission

computed tomography (SPECT), were generated by varying

specific imaging parameters for each tissue type in the simulator.

The spatial distribution of these different tissues (gray matter, white

matter, cerebrospinal fluid, muscles, skull, skin and fat) was defined

on volumetric fuzzy volumes. These fuzzy volumes, where voxel
1 http://www.bic.mni.mcgill.ca/brainweb/.
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intensity is proportional to the fraction of tissue within the voxel,

define the digital brain phantom (Collins et al., 1998).

This digital brain phantom was created by registering and

averaging 27 T1-weighted, 12 PD-weighted and 12 T2-weighted

MRI scans from a single subject. As a direct result of the high

signal-to-noise ratio, these single subject average volumes exhibit

fine anatomical details and enable a faithful representation of the

brain’s complex anatomical structures.

In this paper, we describe the important modifications made to

this phantom and its construction. The goal of the first modification

is to improve the realism of the phantom and thus of the simulated

data. The voxel size of the phantom was decreased to allow the

discrimination of finer detail and enable a better classification. To

improve the realism of MRI or fMRI simulations, more structures

were segmented such as marrow, dura mater and blood vessels. To

improve SPECT, PET or CT simulations, the phantom required a

better skull class, with cranium and facial bones. These improve-

ments were made possible with computed tomography (CT) and

MR angiography (MRA) of this subject, acquired after the creation

of the initial phantom in 1998.

The second modification concerns the method used to construct

the phantom. This method has been modified not only to take into

account the creation of new segmented structures, but also to be

mostly automated in order to be easily applied to create phantoms

from other subjects.

The following sections detail phantom construction and these

improvements.
Methods

Data acquisition

The anatomical phantom is derived from high-quality T1-, T2-

and PD-weighted images, formed from averages of 27, 12 and 12

scans respectively, of the same normal subject (Holmes et al.,

1998) using a 1.5 T Phillips clinical scanner. The acquisition

protocol consisted of a series of 20 1 mm3 T1-weighted MR scans

acquired using a T1-weighted spoiled GRASS [TR/TE = 18 ms/10

ms, FA = 30-, 256 * 256 matrix, 256 mm field of view, NSA 1], a

series of 7 0.78 mm3 T1-weighted MR scans acquired using a T1-

weighted spoiled GRASS [TR/TE = 20 ms/12 ms, FA = 40-, 256 *

256 matrix, 200 mm field of view, NSA l] and a series of 12 2-mm

thick T2/PD-weighted MR scans acquired with dual echo fast SE

[2D multiple slice, TR/TE = 3300 ms/35,120 ms, 256 * 256 matrix,

256 mm * 204 mm rectangular field of view, NSA 1, 12 echoes].

In addition, a computed tomography (CT) scan and a MR

angiography of this subject were performed to assist the

segmentation of bone and vascular structures. The CT scan

[0.98 * 0.47 * 0.47 mm3 voxel size] was obtained on a Picker

spiral CT scanner. The MRA scan was acquired using a 0.45 mm

thick T1-weighted FFE sequence [TR/TE = 48.2 ms/6.7 ms, FA =

15-, 512 * 512 matrix, NSA 1]. The CT and MRA data were not

available when the original phantom was created.

Construction of the T1, T2 and PD average volumes

Preprocessing

Intensity non-uniformity in MR images is reduced by applying

a 3D non-uniformity correction algorithm based on the deconvo-

lution of the non-uniformity blurring kernel from the intensity
histogram of the image (Sled et al., 1998). This process,

independent of pulse sequence, is applied to each of the native

T1-, T2- and PD-weighted MR images independently before the

registration and averaging described below.

Stereotaxic registration

One T1 native image was chosen at random to serve as a target

for registration. This image was linearly registered (9 parameters

using cross correlation) to the International Consortium for Brain

Mapping (ICBM) average brain space (Evans et al., 1993) using

the mritotal automatic stereotaxic registration procedure (Collins

et al., 1994). This registration algorithm proceeds with a coarse-to-

fine approach by registering subsampled and blurred MRI volumes

with the stereotaxic target.

The remaining images were linearly registered (rigid body, 6

parameters) to this first T1 native image. T1 volumes were

registered using cross correlation, and the T2/PD pair, with mutual

information. The two previous transformations were concatenated

so that only one resampling operation was performed to map each

native data volume into stereotaxic space.

These resulting transformations were used to resample all

native images into the ICBM space. The resampling was done

using a trilinear interpolation at a sampling grid of 0.5 mm.

Averaging

All 27 T1-, 12 T2- and 12 PD-weighted resampled images were

intensity normalized (using the volume mean value) and averaged

to create T1, T2 and PD average volumes respectively.

Construction of the fuzzy tissue volumes

Classification

A fuzzy minimum distance classification was used to classify

gray matter (GMc, the ‘‘c’’ means that the volume comes from the

classifier), white matter (WMc), cerebrospinal fluid (CSFc), fat

(FATc) and background (BKGc). In this process, voxel intensities

from T1, T2 and PD average volumes were considered. Prior to

classification, approximately four thousand manually selected

training points were used to estimate the means (mt1
, mt2

and mpdi
) for each tissue class i and to drive this automatic

classification procedure.

In the resulting classified volumes, each voxel intensity vi of a

fuzzy volume represents the fraction of the tissue i (i from 0 to 4,

for BKGc, GWc, WMc, FATc or CSFc) within the voxel, between

zero and one. If gt1, gt2 and gpd are the intensities of the voxel

considered in T1, T2 and PD average volumes respectively:

vi ¼
fi

~4
j¼0 fj

with fi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt1 � mt1ið Þ2 þ gt2 � mt2ið Þ2 þ gpd � mpdi

� �2q

GMc, WMc or CSFc fuzzy volumes generated by the classifier

contained extra-cerebral structures such as muscle or scalp. To

separate brain from non-brain structures, automatically generated

mask volumes were used, as described in the next section.

Brain and skull extraction

Different masks are required to separate tissues within the

intracranial cavity from tissues outside the skull. To begin, we need



Table 1

Relationship between the original classified, binary masks and final tissue

volumes that define the phantom

Class name Creation

GM GMc 7 B

WM WMc 7 B

CSF CSFc 7 B

SKULL BCKc 7 Sct

MARROW CSFc 7 S

DURA CSFc 7 (BV 7 IS)

FAT FATc

FAT2 WMc 7 BV
MUSCLES GMc 7 BV
SKIN/MUSCLE CSFc 7 ISV

The 7 symbol indicates intersection. B is the brain mask, BV is its

complement, IS is the inner skull mask, ISV is its complement, S is the skull

mask defined by the surface-model-based method, Sct is the skull mask

defined from CT scan.
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a mask to identify the brain’s surface. This surface is defined by a

fully automated surface-model-based method (BET2 created by

Smith (2002)). A deformable model evolves to fit the brain’s

surface using a set of locally adaptative model forces. The method

was applied to the T2 average volume. As cerebrospinal fluid is

bright on this imaging sequence, it is included in the brain

segmentation. The brain mask obtained (B) contains gray matter,

white matter and cerebrospinal fluid. A small bright region of the

dura matter was included in this initial brain mask and was

removed by manual editing. The complement of this brain mask

(named BV) was also created to identify non-brain and CSF

structures.

BET2 (Brain Extraction Tool version2) is a new fully

automated tool (Jenkinson et al., 2005) based on BET (Smith,

2002) for extracting inner and outer skull and scalp surfaces. From

the T1 and T2 average volumes, inner and outer skull surfaces are

defined. From these surfaces, inner skull volume (IS) and outer

skull volume (OS) were computed, as well as skull volume (S)

defined as the space between IS and OS. The difference between

inner skull volume (IS) and brain mask volume (B) is that inner

skull volume (IS) includes the dura matter, whereas the brain mask

volume (B) does not include the dura when it is thick (e.g. near the

sagittal sinus). When the dura is thin, it is unfortunately included in

the CSF due to partial volume effects.

Two skull volumes were defined. The previous skull volume

(S), after a single erosion, was used as seen later to identify bone

marrow. A second volume (Sct) was used to define the bones of the

skull by applying a threshold to the registered CT scan. This

second volume (Sct) allows a better segmentation of the facial

bones and features, such as the zygomatic, maxilliary, nasal bones

and the foramen magnum. These masks will be used in the next

section to define different tissues.

Tissue volumes definition

The brain masks were used to separate each of the five volumes

output from the classifier into 10 tissue volumes: gray matter

(GM), white matter (WM), cerebrospinal fluid (CSF), skull

(SKULL), marrow within the bone (MARROW), dura (DURA),

fat (FAT), tissue around the fat (FAT2), muscles (MUSCLES) and

muscles/skin (SKIN/MUSCLES).

The WMc voxels within the brain mask (B) became the final

WM volume, those outside this brain mask formed the muscles

(MUSCLES) volumes. The GMc voxels within the brain mask (B)

became the final GM class. The remaining GMc voxels outside the

brain mask became the class muscle and skin (MUSCLES/SKIN).

Voxels from the CSFc within the brain mask (B) formed the

final CSF volume containing both ventricular and subarachnoid

CSF. Voxels from the CSFc outside the brain mask (B) but inside

the inner skull mask (IS) formed the dura volume (DURA). A

small manual intervention was needed in this step to remove some

incorrectly classified voxels from the DURA and to add them to

CSF. Voxels from the CSFc outside the inner skull mask (IS) but

inside the outer skull volume (OS), i.e. inside the skull volume (S),

formed the bone marrow volume (MARROW).

Voxels from the background (BCKc) within the skull mask

(Set) defined from the CT scan form the skull (SKULL).

The relation between these volumes is summarized in Table 1. After

the creation of these ten classes, the sum of all tissue fractions for a
2 Brain Extraction Tool, http://www.fmrib.ox.ac.uk/analysis/research/bet.
voxel is not always equal to 1.0. These voxels were simply normalized

by dividing their respective tissue components by their sum.

Vessel segmentation

Two different methods were used, depending on the location of

the vessels. For vessels within the brain, we used a new multi-scale

geometric-flow-based method (Descoteaux et al., 2004) applied on

the PD-weighted average volume. A multi-scale Fvesselness_
measure based on the eigenvalues of the Hessian matrix was used

to detect centerlines of tubular structures. This multi-scale measure

is distributed to create a vector field orthogonal to vessels

boundaries so that the flux maximizing flow algorithm (Vasilevskiy

and Siddiqi, 2002) can be applied to recover them. This procedure

yields a binary label volume for the internal vessels.

Superficial vessels do not have a tubular appearance in PD-

weighted scans since they are not completely surrounded by a

brighter signal and appear as indentations or troughs on the surface of

the brain. These vessels were segmented by hand using the registered

MRA data for guidance and merged with the vessel label volume

described above. In order to have a continuous representation of the

vessels (higher values in vessel center, lower values at vessel edge),

the combined binary volume was blurred with a 1 mm FWHM

Gaussian kernel. The resulting volume made the VESSEL class.

Addition of the vessel class into the phantom

As vessels may be segmented inside other classes, the

following condition was applied for all previous classes: if xi,j is

the fraction of ith tissue within the voxel j, and xv,j the fraction of

vessel within this voxel, xi, j = xi, j * (1 � xv, j). For example, if the

vessels’ fraction is 90%, the fraction of the ith tissue becomes 10%

of its initial value.

The eleven fuzzy volumes (the vessel class plus the 10 classes

in Table 1) define the digital brain phantom II.

Simulations

MR simulations

The MR simulator (Kwan et al., 1999) uses first principles

modeling based on the Bloch equations to implement a discrete

event simulation of NMR signal production. Each tissue class was

described by its nuclear magnetic resonance (NMR) relaxation

properties (T1, T2, T2*) and proton density (PD). The appropriate
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Table 2

Each tissue class was described by its nuclear magnetic resonance (NMR) relaxation properties (T1, T2, T2*) and proton density (PD) in the MRI simulations

and by attenuation (in cm�1) and activity (in Bq/cm3) for PET and SPECT

Class name MRI simulation PET simulation SPECT simulation

T1 (ms) T2 (ms) T2* (ms) PD Attenuation (cm�1) Activity (Bq/cm3) Attenuation (cm�1) Activity (Bq/cm3)

GM 833 83 69 0.86 0.09853 22,990 0.1551 11,764

WM 500 70 61 0.77 0.09853 8450 0.1551 8194

CSF 2569 329 58 1 0.0956 0 0.1508 0

SKULL 0 0 0 0 0.151108 0 0.3222 0

MARROW 500 70 61 0.77 0.09853 0 0.1551 0

DURA 2569 329 58 1 0.09853 0 0.1551 0

FAT 350 70 58 1 0.087718 8450 0.1394 0

FAT2 500 70 61 0.77 0.087718 8450 0.1394 0

MUSCLES 00 47 30 1 0.098731 8450 0.1553 0

SKIN/MUSLE 569 329 58 1 0.098731 8450 0.1553 0

VESSELS 0 0 0 0 0.0956 0 0.1508 0
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values came from the literature and were optimized by minimizing

the difference between the real and simulated images (cf. Table 2).

These NMR relaxation parameters are uniform for all regions of a

tissue class.

Scan parameters such as slice thickness, field of view, receiver

bandwidth, number of signal averages, scan matrix size and pulse

sequences parameters can all be controlled.

Coil parameters, related to the scanner’s system, can also be

controlled. They include noise models and RF field inhomogeneity.

The noise models could generate percentage noise with a standard

deviation given as a percentage of the signal for a reference tissue

or intrinsic noise based on the intrinsic SNR model of the scanner

and image acquisition parameters. The noise models could also

generate images with a required image SNR. Receive and transmit

RF inhomogeneity maps related to different MR scanners could

also be used.

To compare T1-, T2- and PD-weighted simulated brain images

to real scans, scan parameters used were identical to those detailed

in the data acquisition paragraph. A percentage noise level of 3% is

applied, but no receive and transmit inhomogeneity is used.

PET simulations

The Monte-Carlo-based SORTEO-PET3 simulator software

(Reilhac et al., 2004) was used to simulated PET images with the

new digital phantom. It was configured to generate emission and

transmission projections for the [18F]FDG radiotracer and for the

Ecat Exact HR+ scanner (Siemens). The 3D emission protocol

consisted in the collection of data onto a single time frame over a

10-min period starting 45 min post-injection, during which an

average of 16 billion disintegration histories were simulated.

A functional model describes the activity within each tissue

class of the phantom. For the [18F]FDG functional model, the

different regions of the brain phantom were merged onto 2

compartments: gray matter and white matter/skin/fat/muscle.

Constant activity levels (in Bq/cm3) assigned to the two compart-

ments are those published by Reilhac et al. (2005). These values

were derived from actual human PET data which were fully

corrected (scatter, random, attenuation, system dead-time and

radioisotope decay) (Reilhac et al., 2005) and are uniform for all

regions of these compartments.

A map of photoelectric linear attenuation coefficients was

obtained by assigning a tissue type together with the associated
3 http://sorteo.cermep.fr/.
attenuation coefficient v at the 511 keV energy emission to each

class of the phantom (cf. Table 2).

Emission data obtained from the simulator were normalized and

corrected as detailed in Reilhac et al. (2005). Data were

reconstructed using the 3D filtered back projection (Hanning filter,

cutoff frequency of 0.3 mm�1).

SPECT simulations

The Monte-Carlo-based SimSET4 simulator software (Harrison

et al., 1993) was used to simulated SPECT images with the new

digital phantom. The SimSET software was configured to generate

emission projections for the 99mTc-HMPAO radiotracer and for the

three-head gamma camera equipped with ultra high-resolution

parallel collimators (IRIX, Philips Medical Systems).

Monte Carlo simulations of SPECT data require the definition

of an activity map representing the 3D spatial distribution of the

radiotracer and of the associated attenuation map describing the

attenuation properties of the body.

An uniform activity value (in Bq/cm3) is assigned to the white

matter and gray matter classes of the phantom (cf. Table 2). These

activity values come from the study of Grova et al. (2003) in which

a theoretical model of brain perfusion was established from real

SPECT data.

A theoretical map of photon attenuation coefficients was obtained

by assigning a tissue type together with the associated attenuation

coefficient v at the 140 keV energy emission of 99mTc to each class

of the phantom for the radiotracer 99mTc-HMPAO (cf. Table 2).

Emission data obtained from the simulator were normalized and

corrected as detailed in Grova et al. (2003). Reconstruction was

performed by filtered backprojection using ramp filter (Nyquist

frequency cutoff). The reconstructed data were post-filtered with

an 8 mm FWHM Gaussian filter.
Results

Digital brain phantom II

The average of many single image volumes enhances the

quality of MR images. While the process enhances the resolution

of the phantom, the resulting volume does not have 0.5 mm3
4 http://depts.washington.edu/simset/html/simset main.html.
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Fig. 1. Coronal slice of a single native T1 MR (left) through the left temporal lobe, the T1 average volume with a voxel size of 1 mm (center) and 0.5 mm

(right) showing improved signal-to-noise and neuroanatomical detail, as in the hippocampus or claustrum.
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resolution, but the quality is better than the 1 mm3 data used to

create the phantom. The decrease of the voxel size of the phantom

could modify partial volume effects at structure borders but allows

a better delineation of fine structures (see Fig. 1).

All the fuzzy volumes that define the brain phantom are shown

in Fig. 2. A discrete version of the phantom was also created by

storing the label of the most important fraction class at each voxel

location. This discrete phantom was not used for simulation but

rather to aid the visualization of the spatial relationships between

the different tissue volumes.

The skull was well detected on the previous and on the new

phantom, but the bones and cartilage of the face such as the

zygomatic, nasal, maxilla or sphenoid bone were better detected on

the new phantom (see Fig. 3A), thanks to the CT scan.
Fig. 2. Transverse slices through the CSF, GM, WM, FAT, SKIN/MUSCLES, M

discrete phantom.
The multi-scale geometric flow method allows a good

segmentation of internal vasculature like the anterior, middle and

posterior arteries and segments (Fig. 3B). The registered angiog-

raphy was helpful for the segmentation of superficial vasculature

and principally the superior sagittal sinus, the straight sinus, the

transverse sinus and some superior cerebral veins. The superficial

segmented vessels are also shown in Fig. 3B.

Simulations

To show the impact of the vessels class in the simulation, T2-

and PD-weighted images were simulated from the previous and the

new phantom. In Fig. 4, sagittal slices are chosen to show the

middle cerebral artery. The vessels of the middle cerebral arteries
USCLES, FAT2, DURA, SKULL, VESSELS, MARROW classes and the



Fig. 3. (A) Skull classes from the previous phantom (on the left) and from the new phantom (on the right) (B) 3D left view (on the left) and top view (on the

right) of the vessels class including superficial and internal vessels.
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were included in the CSF class in the simulations from the previous

phantom, while they were well defined in the simulations from the

new phantom. Some superficial vessels could also be seen in the

simulations from the new phantom. Furthermore, the dura matter

appears darker and more realistic in the new simulations compared

to previous simulations.

This phantom has been used to generate PET and SPECT

images with the simulators of Reilhac et al. (2004) and Harrison

et al. (1993) respectively. The activity and attenuation maps

obtained from the anatomical classes of the phantom and filled

with values of the Table 2 are shown Fig. 5 for PET data and Fig. 6

for SPECT data.
Discussion

The major improvements made to the phantom are decreased

voxel size and the addition of four tissue classes: vessels, dura,

bone marrow and bone. The final resolution of the phantom is due

to the resolution and sampling rate of the original data, the quality

of the inter-volume registrations, the interpolation kernel used in

the resampling steps and the sampling rate of the final phantom.

Interpolation with a kernel that does not have infinite support will

decrease the resolution of the interpolated data. By choosing a
Fig. 4. Comparison between real and simulated images from the previous and the n

center: simulation from previous phantom, right: simulation from new phantom.
small kernel (0.5 mm), the degradation to the interpolation step is

minimized. The original data is band-limited, and the registration

and averaging process does not increase the resolution of the

phantom. However, the signal to noise (SNR) and contrast to noise

(CNR) ratios are improved in the average volume, thus enabling

visualization and separation of smaller and finer structures when

compared to any of the individual MRI data sets. The digital brain

phantom II is more anatomically realistic. Defined by ‘‘fuzzy’’

volumes, it models partial volume effects between tissues. Note

that, while there may remain errors in classification when

compared to the true anatomy used to define the data, we define

the digital phantom as truth for simulations. The goal is to generate

anatomically realistic images and not to exactly classify the

original data. This phantom is a good gold standard to measure

the performance of image processing algorithms since it can be

used to generate realistic simulations for validation studies.

We work on the assumption that the phantom is the ‘‘ground

truth’’ and defines truth in the simulations. Even though we

attempted to build the most realistic anatomical phantom possible,

a few unrealistic partionings are present in the phantom. We list

below some discrepancies between the real brain of the phantom

and the possible impact on eventual validations. First, the VESSEL

class could be different from the real vessel structure for two

reasons: the diameter of the vessels in the phantom may be
ew phantoms. Top row: PD images, bottom row: T2 images. Left: real MRI,

Note improvements due to vessel class in the region of the insular cortex.



Fig. 5. Transverse slice through an activity image of the simulated FDG PET (A), an attenuation image of the simulated FDG PET (B) and a simulated FDG

PET image (C) superimposed on the T1 averaged image (D).
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different because of the 1 mm blurring and some small vessels

were not detected in the vessels class. This should be taken into

account if the MR simulations are used to validate a vessel

segmentation method. Second, the CSF class could include non-

CSF tissues such as small vessels not detected in the VESSEL

class, tiny amounts of dura matter not classified in the DURA class

and internal structures such as choroid plexus included in the

temporal horns of the lateral ventricles. We should consider these

inclusions for classifier performance evaluation on MR simulations

when the phantom is used to define truth. Third, partial volume

effects could be modified due to the 0.5 mm resampling. It could

affect classification algorithms at structure borders or cortical

thickness measures. Last, we cannot assert the exact classification

of all tissues outside the skull. Some layers are very thin (such as

muscles, skin or fat) and could be mixed together. Therefore, the

MR simulations are not adapted for the validation of the

segmentation of such structures. However, they could be used

for the validation of bone segmentation that was improved due to

the CT scan.

Another assumption is that each tissue class is homogeneous,

with uniform NMR tissue parameters, activity and attenuation

values. This assumption could be realistic for fat, muscles or skull

classes but could be a limitation with respect to white or gray

matter complexity. For example, it is well-known that the cortex is

layered, and this layering is not uniform throughout the brain.

Cortical structures could be classified in five fundamental types

based primarily on the relative development of granular and

pyramidal cells (Economo and Koskinas, 1929). A better model

could be obtained by taking voxels currently labeled as Fgray
matter_ and reclassifying them into these five gray matter sub-
Fig. 6. Transverse slice through an activity image of the simulated HMPAO SPE

simulated HMPAO SPECT image (C) superimposed on the T1 averaged image (
classes. Another possible sub-classification could be a lobe-based

classification, as some studies have reported significant differences

in T1 (Steen et al., 2000), T2 (Wansapura et al., 1999; Zhou et al.,

2001) or perfusion (Grova et al., 2005) from one location in the

cortex or in the white matter to another. The anatomical variation

of the NMR parameters within the brain is the subject of a future

research project within our group and will lead to an improved

phantom for MRI-specific simulations.

The digital brain phantom II has been used to generate realistic

MR, SPECT and PET images. Only a few simulations are shown in

this paper to illustrate the possible uses of the phantom. Many

different simulations could be computed (PET and SPECT with

different tracers, MRI with different sequences. . .). Some mod-

ifications such as adding pathologies or highlighting activations

could also be easily performed.

The parameters assigned to each class of the phantom to

compute MRI, SPECT and PET simulations were previously

published (Reilhac et al., 2005; Grova et al., 2003). For the vessel

class, the NMR relaxation properties of the blood (T1, T2, T2* and

PD) have to be optimized to take into account flow (for the

moment, these parameters are considered as being null in the vessel

class). The visual comparison of both simulated and real data

provides qualitative evaluation of the simulation realism. A

quantitative evaluation and an optimization of these parameters

are beyond the scope of this paper which focused on the phantom

improvements.

The current anatomical phantom is based on a single brain.

While there are many aspects of an image processing method’s

performance which can be evaluated within this restriction, it

would be desirable to have equivalent simulated data from more
CT (A), an attenuation image of the simulated HMPAO SPECT (B) and a

D).
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than one subject to take into account inter-subject anatomical

variabilities. However, if simulations are to produce scans typical

of a population of brains, anatomical inter-subject variabilities

must be considered. This can only be done by testing the method to

validate on a database of simulations from different anatomical

models. In this way, it also possible to validate the robustness of a

method in the presence of interindividual anatomical variability.

Furthermore, a set of different brains enables not only the study of

anatomical difference but also differences in tissue composition

that give rise to variability in NMR tissue parameters. It should be

useful to model tissue parameter variations across a population of

subjects.

The creation of the previous phantom (Collins et al., 1998)

required significant manual intervention which made fastidious its

application to the creation of a family of phantoms from different

subjects. The method presented here requires little intervention and

could therefore be applied to the creation of a group of digital

phantoms using data from different subjects. This will be the

subject of further work in our laboratory.
Conclusion

The digital brain phantom was improved using mostly

automated techniques. The new tissue classes added (vessels, dura

matter and marrow) improve the realism of the resulting

simulations. These data are invaluable as it can be used to drive

simulators for different modalities including MRI, fMRI, PET,

SPECT and CT. As the method proposed to build the phantom is

mostly unsupervised, it will be easily used to create phantoms from

other subjects.
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