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Abstract. Implicit template deformation is a model-based segmenta-
tion framework that was successfully applied in several medical appli-
cations. In this paper, we propose a method to learn and use prior
knowledge on shape variability in such framework. This shape prior is
learnt via an original and dedicated process in which both an optimal
template and principal modes of variations are estimated from a collec-
tion of shapes. This learning strategy requires neither a pre-alignment
of the training shapes nor one-to-one correspondences between shape
sample points. We then generalize the implicit template deformation
formulation to automatically select the most plausible deformation as
a shape prior. This novel framework maintains the two main proper-
ties of implicit template deformation: topology preservation and com-
putational efficiency. Our approach can be applied to any organ with a
possibly complex shape but fixed topology. We validate our method on
myocardium segmentation from cardiac magnetic resonance short-axis
images and demonstrate segmentation improvement over standard
template deformation.

1 Introduction

Model-based methods are particularly effective and popular in medical image
segmentation. Among them, template deformation has recently been used in
various applications [1–4] for its interesting properties (computational efficiency,
topology preservation, compatibility with user interactions). This variational
method consists in seeking a segmenting implicit function as a deformed implicit
template. This template, acting as a shape prior, is therefore of paramount im-
portance. However, in previous works the initial template was either set as a
synthetic model (e.g. ellipsoid for a kidney [2–4]) or as a segmented organ from
a single arbitrary image [1]. Despite the consensus that learning shape priors is
a powerful approach to improve robustness [5, 6], this has never been proposed
in the context of segmentation by implicit template deformation.

In this paper, our goal is thus to improve implicit template deformation by
taking into account learnt shape information while keeping both topology preser-
vation and computational efficiency. Shape learning is often performed through
statistical analysis of boundary vertices [6, 7] or implicit functions [8, 9]. However
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Fig. 1. Given an
initial synthetic shape
φ0, a set of shapes
{φi}i is simultane-
ously segmented via
implicit template
deformation while an
intermediate mean
shape φm = φ0 ◦ L
(with the same topol-
ogy as φ0) is estimated

neither of these two representations guarantees topology preservation after av-
eraging. To do so, other methods represent shapes via diffeomorphisms [10, 11],
but they come with a high computational cost that is not compatible with real-
time segmentation. We therefore propose a dedicated learning approach by us-
ing the template deformation energy as a pre-metric in the shapes space. This
yields a co-segmentation process (similar to [12] for registration), within which
an optimal template is estimated (see Figure 1). We also capture further infor-
mation by building a space of main deformations around this template. Finally,
we introduce a generalization of the template deformation formulation by us-
ing the computed statistics in the regularization term. The proposed framework
is generic and can be applied to any organ with a possibly complex and vari-
able shape but a fixed topology. We demonstrate its efficacity and interest by
addressing the problem of myocardium segmentation in 2D cine-MR images.

In the following, Section 2 introduces the main notations and recalls the im-
plicit template deformation framework. In Section 3, we develop the learning
framework to estimate statistics that will be used to improve segmentation in
Section 4. Optimization details are provided in Section 5. Validation results on
clinical data are presented in Section 6 and discussion concludes the paper.

2 Segmentation by Implicit Template Deformation

Implicit template deformation [1, 2] is a variational framework for image seg-
mentation. The segmentation is defined through the zero level-set of an implicit
function φ : Ω → R, and φ is positive (resp. negative) inside (resp. outside) the
segmentation. In this framework, the set of admissible segmentations S is defined
via an implicit template φ0 : Ω → R as the set of all implicit functions with the
same topology as φ0, i.e. S = {φ : Ω → R s.t. φ = φ0 ◦ ψ , ψ is diffeomorphic} .
The unknown is thus the transformation ψ : Ω → Ω which is sought as a mini-
mum of a region competition energy:

min
ψ

{∫
Ω

H(φ0 ◦ ψ) rint +
∫
Ω

(1−H(φ0 ◦ ψ)) rext + λ R(ψ)
}
, (1)
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where H denotes the Heaviside function (H(a) = 1 if a > 0, 0 otherwise) while
rint and rext are image-based functions such as rint(x) is lower (resp. higher) than
rext(x) if voxel x seems to belong to the target object (resp. background). R(ψ)
is a contraint term on ψ that prevents the segmentation φ = φ0◦ψ to deviate too
much from the initial template φ0; it is weighted by a parameter λ. In [2], ψ is
decomposed into (i) a global transformation G ∈ G (e.g. a similarity) accounting
for the pose of the template in the image, and (ii) a diffeomorphism L ∈ D(Ω)
that yields local deformation and does change the shape of the template. This
decomposition allows to define the regularization as a function of the deformation
only R(ψ) = R(L) = 1

2‖L − Id‖22. The problem finally reads

min
L,G

{∫
Ω

H(φ0 ◦ L ◦ G) rint +
∫
Ω

(1−H(φ0 ◦ L ◦ G)) rext + λ

2
‖L − Id‖22

}
.

(2)
In such a setting, φ0 not only fixes the topology of the segmentation but also

acts as a shape prior, which makes its choice of paramount importance. Moreover,
the term R could be improved by taking into account shape variability of the
considered organ. In the next section, we develop a framework to tackle both
problems by estimating statistics on a collection of shapes.

3 A Dedicated Learning of Shape Variability

Consider N shapes of a given organ (coming for example from manual expert
segmentations) implicitly represented by {φi}i=1..N ⊂ S. From this set we aim
to extract useful statistical information in terms of segmentation, that is to say
a mean shape and a deformation model.

In order to estimate statistics in S, we first define an adapted pre-metric in
this space. Any shape φ1 ∈ S can be warped to another shape φ2 ∈ S via implicit
template deformation by solving Problem (2) with φ0 := φ1, and for example

rφ2

int := max(−φ2, 0) and rφ2

ext := max(φ2, 0). This leads to a dedicated
definition of shape dissimilarity:

C2(φ1, φ2) = min
L∈D

G∈G

{∫
Ω

H(φ1◦L◦G) rφ2

int+

∫
Ω

(1−H(φ1◦L◦G)) rφ2

ext+
λ

2
‖L−Id‖22

}

As in [12], our dedicated notion of mean is defined via a minimization problem :

φm = argmin
φ∈S

N∑
i=1

C2(φ, φi) ⇔ φm = φ0 ◦
{
argmin
L∈D(Ω)

N∑
i=1

C2(φ0 ◦ L, φi)
}

(3)

The right-handside equivalence comes from the constraint φm ∈ S. Indeed, the
mean template has to preserve the topology of the training shapes. Expanding
the segmentation costs and neglecting constant terms in Equation (3) yields the
following optimization problem to solve:

min
L∈D(Ω)

(Li)i∈D(Ω)N , (Gi)i∈G
N

Elearn = −
N∑
i=1

∫
Ω

H(φ0◦L◦Li ◦Gi) φi+ λ

2
‖Li−Id‖22 . (4)
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This can be interpreted as segmenting simultaneously all training shapes {φi}i
starting from φ0 while estimating an optimal common intermediate shape φ0 ◦L
(see Figure 1). In Eq (4), the energy is minimized (see Section 5) with respect
to three kinds of variables

– the global transformations (Gi)i, called the poses, that register all shapes
to φ0 with translation, rotation and scaling. As they are part of the opti-
mization process (see Section 5), they do not bias the learning, as a fixed
pre-alignement (e.g. [8, 9]) would do.

– the common deformation L, which includes the common parts of the
deformations from φ0 to all the training shapes.

– the local deformations (Li)i, called the residual deformations, are the
residual components of the deformations from φ0 ◦ L to φi. Unlike L, their
magnitude is penalized so that any deformation which is common to all the
training set will be preferably included in L.

The optimal common deformation L∗ can be used to define the optimal tem-
plate as φm = φ0 ◦ L∗. This shape globally minimizes the magnitude of residual
deformations to each shape of the dataset. Note that L is not penalized so the
choice of φ0 defines the topology of φm but does not affects it further.

The optimal residual deformations (L∗i )i are also available and can be used
to capture further information on the variability of the training shapes. We
build a space of principal deformations L to constrain future segmentation of
new images. As in [13], a principal component analysis (PCA) is applied to the
residual deformations (L∗i )i to find a suitable parametrization of such a space.
Any deformation � ∈ L can then be written as a linear combination of the offset
�̄ and (�k)k=1..M the first M modes of variation:

�[w] = �̄+

M∑
k=1

wk �k , w ∈ R
M . (5)

The space of diffeomorphisms is not stable under linear combinations so ele-
ments of L are not necessarily diffeomorphisms. Nevertheless we show hereafter
how this space indirectly in a topology-preserving segmentation framework.

4 Generalized Implicit Template Deformation

The previously estimated statistical information can be used to improve the im-
plicit template deformation described in Eq. (2). A first improvement is achieved
by replacing the original template φ0 by the mean template φm = φ0 ◦ L∗. Sec-
ondly, the estimation of the deformation can also be enhanced by using the space
of principal deformations L. In most previous work [7, 9, 14], the learnt variable
is directly expressed as a linear combination of modes. Here we rather modify
the regularization term R so that diffeomorphism L is constrained with respect
to the set L instead of the identity. Thus, only deformations that cannot be ex-
plained through the learnt space L are penalized. The rationale is to use linear
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combinations of diffeomorphisms indirectly to preserve both the topology and
the computational efficiency. The new segmentation energy therefore reads

Eseg(L,G, w) =
∫
Ω

H(φm◦L◦G) rint+(1−H(φm◦L◦G)) rext+λ
2
‖L−�[w]‖22 . (6)

Minimization of (6) can be performed with an alternate scheme:

Update of the Segmentation. With �[w] fixed, the energy is minimized
through a gradient descent-like scheme on L and G (see Section 5).

Update of the Modes Weights. With L and G fixed, the update of L[w] can
be seen as a projection of L onto L. Indeed the energy minimization comes
down to a simple quadratic problem, whose closed-form solution is

∀k ∈ {1, ..,M}, wk =
〈L − �̄, �k〉 / 〈�k, �k〉 . (7)

The first step is similar to standard template deformation [2] and the second one
is straightforward. Therefore, the proposed algorithm maintains the efficiency of
the original algorithm. Further details on optimization are provided herebelow.

5 Optimization Schemes

Both learning (4) and segmentation (6) energies involve variables, either in G for
poses or in D(Ω) for deformations, that are simultaneously updated. Variables
in G can be parameterized by a vector p in R

P (translation, rotation angles,
scales). Minimization of a given energy E is done through a gradient descent on
this vector: p(n+1) ← p(n) − Δt∇pE, where Δt is the time step. On the other
hand, such a process is not suitable in D(Ω) as this space is not stable under
linear combinations. A more appropriate way is to combine diffeomorphisms via
composition since (D(Ω), ◦) is a group. Following [1], we therefore update any
diffeomorphism L in the following way: L(n+1) ← (Id − Δt ∇LE) ◦ L(n).
The regularity is enforced by a Gaussian filtering of the gradient as in [2].

6 Validation

We validated our method in the context of myocardium analysis and segmenta-
tion in cardiac short-axis 2D cine-MR images. This task is particularly challeng-
ing for model-based approaches because of the complex topology of the target
object, i.e. a band around left and right ventricles.

Our dataset is composed of 245 MR images coming from 61 different patients,
which was randomly split into a training set (120 images, 30 patients) and a
testing set (125 images, 31 patients). The acquisitions have been synchronised
so that each heart is in the same cardiac phase. In every image, a myocardium
segmentation has been manually performed by a radiologist. The initial synthetic
template φ0 used is shown in Figure 1.
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Fig. 2. Mean model and first two modes of the variation of the myocardium learnt
on the training dataset using implicit shape model [9] (left), active shape model [7]
(middle) and the proposed method (right). For our approach, the visualized shapes are
the zero level-sets of φm ◦ (�̄+w1 �1 + w2 �2).

First we compare qualitatively the shape information learnt from the implicit
shape model proposed in [9], the active shape framework [7] and our proposed
approach. Figure 2 shows the mean shape and first two modes of variation for
each method. The implicit method fails at recovering the true topology of the
mean shape, as well as its first modes of variations. The explicit method performs
better and provides a reasonable mean model. However, the modes of variation
are less satisfying than the modes of deformations learnt with our approach
(which tends to provide a better topology preservation and seem more realistic).

Then we evaluate how learnt information improves segmentation via implicit
template deformation of unseen images. Myocardiums have been segmented in
test images using (i) the synthetic model φ0 as template, (ii) the estimated
mean model φm as template, (iii) the new deformation model-based regulariza-
tion term in addition to the mean model φm (with 5 modes). The image-based
classification functions rint and rext were negative log-likelihoods of intensity
probability distributions inside and outside the myocardium. Performance of
each algorithm is quantified using Dice coefficients between the segmentation
and the expert ground truth. Results on the whole testing set are summarized
in Figure 3. Both the replacement of the template φ0 by φm and the introduction
of the new regularization term improved the robustness of the segmentations (p-
value < 0.0001 for a Wilcoxon signed-rank test). To illustrate this improvement,
Figure 4 shows some results in three different cases, for the classical regulariza-
tion term with two values of the shape constraint parameter λ ∈ {1, 2} and the
new model-based regularization term. In all settings, the template was the mean
model φm. Consider Case �1: since the image term is reliable, a satisfying result
is obtained with a small shape constraint. However, the myocardium deviates
significantly from the mean shape: using a too strong constraint λ2 prevents
the algorithm to converge towards the right solution. Conversely in Case �2, the
image information is much more ambiguous. This provokes some leaks with λ1,
which shows there is no fixed value that allows a good segmentation in both
cases. Yet by introducing the new regularization (fourth column), likely defor-
mations are not penalized. This allows us to widen the capture range while still
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avoiding unrealistic leaks. Finally, case �3 illustrates that our method may also
improve the result even if no λ was originally successful.

Fig. 3. Boxplot of the Dice coeffi-
cients for myocardium segmentation
in MR images via implicit template
deformation with synthetic model
φ0 (left), mean model φm (middle),
mean model φm and deformation
model (right)
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Fig. 4. Segmentation results (red) of different cases versus ground truths (green). Main
failures are highlighted by yellow arrows. (a) Original images, (b,c) Baseline method [2]
with small (λ = 1) and high (λ = 2) shape constraint, (d) Proposed method.

7 Conclusion

In this paper we have presented a method to include organ shape variability in
the implicit template deformation framework. A variational approach was pro-
posed to extract statistical information (mean and principal variations) from a
collection of shapes. This training method is automatic, does not require land-
marks correspondance and relies upon a definition of shape dissimilarity that is
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directly derived from the implicit template deformation functional. We also pro-
posed a generalization of the original segmentation algorithm in which the shape
prior is automatically adapted to the current image during the deformation pro-
cess with almost no additional cost (segmentation takes around one second on a
standard computer). Quantitative results demonstrated the improvement over im-
plicit template deformation for a 2D application. Our approach is very generic and
can be used to segment any object with a complex shape but a fixed topology that
shall be preserved. Furthermore, extension in 3D or to multiple objects (e.g. brain
structures) is straightforward thanks to the implicit representation of shapes. De-
spite its paramount importance, the image-based term was not investigated as we
focused on incorporating shape information on top of any pixelwise classifier. We
plan to extend our framework to learn a dedicated appearance model as well.
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